
7r.0 ,. , I-------
.- J - *

AD-A264 051

Devces Fed

Special Issue on the Workshop on
Discrete Time Domain Modelling of Electromagnetic
Fields and Networks, Part 2 D I

DTI

SELECT,,EI

Managing Editor WOLFGANG HOEFER
Editor, Europe BRIAN TUCK

*WILEY

Chichester - New York • Brisbane - Toronto w Singapore



INTENATINALMANAGING EDITORINTENATINALWolfgang j.- R. Hoefer
JOU.R.NA1L O)F NSERC MPlR Teitech Research (lhitz in RF.

Enginseering, Department of Elc,ýtri...tl & Computer

N u m criad Eginceringt. P.0,O Box 3055. Unii~rrmtitx Vi1ouria

Mode1 maw~ EDITOR, EUROPE
Brian Tuck

Electinic Netwvork , Departmenit of Electrical "nd Ekcclroni,: EngincecrinL'.
L~evccs nd FeldsUniversitv of Nottingham. Lnivermitv Pl~~k. Nottingham

EDITORIAL ADVISORY BOARD
Johne M. Arnold 4airryn R. Harrs Alain E. Ros,
Department of Electronic Engineering. Department of Elcairi'ai Engineerinig, Elreeoni, LairAirs.
Unisersirv of Glasgow. Gilasgow. UK universiitv ot !rnik)itamplon. faculir deN SN..,en r. or ý .IS le~hniquc

Highfilid.Soihampion No9 ýNII _'2 BP 582-ABIDtAN ':.
Martin J. Balcbin Krd(0E'%If
School of Electuical Engineering. Tatsuo Itoh Rp.l oEd'.IR
University of Bath. ClIjserton Down. Bath 66-147A ENG IV Peter Rtisser
8Bk2 7,AY, UK Dcapartesent oi Liectrwcal Eneineeroii., lct lsý n~mj Inhcin..

4o5 Hdaard. A..trvue_ I..,,Anoeles Lcrlrtohl fLcr Flhtrec.un~itcotnik.
John Bandcer i A 10024- I 54. ULSA licsirass 211.
Depatrtment of Electrical Enizincerine. Rolf H. Jansen i()01).Vlun~hen 2, Gcrmuns
McMaster University. Hariflton. Ontirio. industrial .%Grousvas and I*Tlc-.hfi,iiiv'. Pite Sagues
Canada L8S 4L1_8 urohaus am viv L~itrawire d Ekrvncrtiwiro ics .

.krt lrull I-ISF~.Ac~
Adalbergt Beyer 4;ktO Rainiecn 1. l;iE(,vrrnrj dn as. S
l'.chlbereich Elcktroichlnik 'koKgw
Universitat-GH-Dui,surg. Vuictrimii Kagaw~a ;LnrnePeeSlesr

Bismarckstrasse b,9. errmn iLetii -n:nciz Ptr lese
41100 Duisbutrg 1. (;ermani.. Okivaami Lnsrersil' Hcin.iji Enroinecrnir l)e'rjrtrrcni

()i..isama 7w). J,,pan Ni5j,,ll 1- nocrsis
UIsil Un;se~ts io

Dennis H. Choi Arthur J. Lowery Viontreaj IPQ) Saniji H kA :A7
Departmeteo of Elcctrical Eneincerini. Phl'otni,c Rc'ear..i laborjrn-s..
University of Regina. Reizina. Deoparitment ot Electricil jn Christopher M. Snowden
Saskatchewan. Canada 545 I)A2 Elec~tronic lrnizinerinn. Deparitment 4i Llc~ircji 6

Unioersiiv oi Milbourne, Electroni, Engineering.
Christos Christopoulos Parksillet. Vi..torta 3052. Au'traiija Fre Imniersits no Lce~is-
Department of Electrical and ELfctrisni. ALxne aicc1eeds LS2' 9JT, UK
Engineering. AeadrMrni
Uiniversity of Nottingham. Unisernni Fa..uiiv ot Elecitricai Engineering. Roberto Sorrentino
Park. Nottingham N67 2RD, UK Unituersitv or Bvlgrjdc. Institunnn di Elitirornna

Bulevar Rcsolucoc -;. Iniversita di Pernnaa.
George Costache PO1 Box 8 16. 110021 Belgrade. Via Cairol,. 24.
Department of Electrical Engineeringz. Yiugoslavia 1.00100 P el'rs a. lli~an
University of Ottawa. ijitawa. Ontario Edmund K. Miller Frederick M. TescheK IN 6N5. Canada Leader Gr,,-.p .MEE-3. MS JSSO. 6,921 Spanks Branh1 Drivr.

Losý Alamtos National Labtorators. Dallas. resas 7 5248, USADonard de Cogan l.,is Alaimos.
School of Information Svstems, New Mexico N7545. USA Bill Trowbridge
University of East Anglia. K oMigVector Field% Ltd.
Norwich NR4 7TJ, UK Keno Laortirs .4 Bainkside. Kidlinat no.

Nuclear Engineering Research Lbrtr
Leopold B. Felstia Faculty o1 Engineering. Oxford XS 5iJ1E, U K
Department of Electrical Engineerinit and Uniser sits of Tokso. Thomas Weiland
Computer Science. Polytechnic Btinkvo~ku. Tukyo I1I3. Japan Electrical Enaineerne Department.
Institute of New York. Route I i. Takayoshi Nakata T. H Darmistadt.
Farmingdale. New York 11735. USA Departmenst of Electrical Engineering. Merckstruiak 25.

Okayamna University. Tsushinma. D,6100 Darmistadt. Germansi
Ron L. Ferrari Okavansa 700. Japan AvnWxe
Trinity College, AvnWxe
Cambridge C B2 IlTQ. UK Miehel Ney .President. Quantit Laboratories Inc..

Department of Electrical Engineering. 200-211 McDcrmoi Avenue.
Ernst .reeanUniversity of Ottawa. Ottawa. Ontario. Winnipegf, Cranada R33 0S9

Department of Electrical Engineering.,aaa I N
Imperial College, G[afios Y. Phtilippou Ingo Wolff

Exhiitin RadERA echoloy Ld, achbereich Elektrotechnilt.
Exhiitin RadERA echoloin td.Univerutai-GH. Duisbuarg,London SW7 211T. UK Cleeve Road. Leatlierheaid. Bisrtnarckstrssse 69.

Irbio FkaiSurrey KT22 7SA. UK 4100 Duiisburg 1. Germany
Department of Electrical Engineering. Sitnonb Yooshidaal
Hokckaido University. Philips Medical Systems Nederland, oiouVasdVeenpluis 4--6. P.O. Bo 1o.ooo. Department ot Electrical Ettgineering.Sapporo 060, Japan 5650 DA Best, The Netherlands Faculty of Engineering. Hokkcaidoa

Peter Gough Susan H. Puslko University. Sapporo 060. Japan
Solid State Electronics Division, Department of Electronic Engineering. Otek C. Zjesskiewicz
Phldips Research Laboratories. University of Hull. Department of Civil Engineering.
Cross Oak Lane. Redhill. Hull HU6 7RX, UK University College of Swansea.
Surrey RH! 5HA, UK Singleton Park. Swansea SA2 8PP. UK

Advertising: For details contact-
,Mrichael J. Levermore. Advertisement Sales. John Wiley & Sons Ltd., Baffins Lane, Chsichester. Sussex P019 IUD. England, Telephone
0243 770351; fui 0.Z43 775878; telex 86290).
To subscribe: Orders should be addressed to: Subscriptions Department. John Wiley & Sons Ltd.. Baffins Lane. Chichester, Sussex
P019 IUD, England. 0993 subscription price UIS$250.00. lntrisnatnotaaljoumnal of Nums~eetcal Modefling.' Electronic Sertooks. Deticet anld
Fields (ISSN 0894-3370) is published quarterly by John Wiley & Sons Ltd.. Baffans Lane. Chicheiter. Sussex. England. Second class
postage paid at Jamaica. NY 111431. Air freight and mailing .in The U.S.A. by Publications Expediting Services Inc., 200 Meacham
Avenue, Elmont, NY 11003. Copyright (E 1993 by John Wiley At Sons Ltd. Tvpeset in the U.K. by Photo-graphics, Honiuton, Devon
Printed and bound in Great Britain by Page Bros. Norwich. Printed on actid-fiee paper.

U.S.A. POSTMASTERS: Send address changes to Irnemamosnal Joutal of NVusencalWodellmng.' Electreotic Nemwoki, Dewitar and Ftelds,
c o Publications Expediting Services Inc., 200 Meachsam Avenue, Elosont, NY 11003.



INTERNATIONAL JOURNAL OF NUMERICAL MODELLING:
ELECTRONIC NETWORKS, DEVICES AND FIELDS

CONTENTS

Special Issue on the Workshop on Discrete Time Domain Modelling of
Electromagnetic Fields and Networks

Mwuch, 24-25 October, 1991

Part 2

Guest Editor: Professor Dr Peter Russer

VOLUME 6, ISSUE No 1 February 1993

E ditorial .................................................................................................... I

Efficient Analytical-Numerical Modelling of Ultra-wideband Pulsed Plane Wave Scat-
tering from a Large Strip Grating: L. Carin and L. B. Felsen ............................ 3

Calculating Frequency-domain Data by Time-domain Methods: M. Dehier, M. Dohlus
and T . W eiland ........................................................................ .............. 19

The Hilbert Space Formulation of the TLM Method. P. Russer and M. Krumpholz . 29

Spatially Weighted Numerical Models for the Two-dimensional Wave Equation: FD
Algorithm and Synthesis of the Equivalent TLM Model: N. R. S. Simons and A. A.
Sebak ................................................................................................ ... 47

Multiport Approach for the Analysis of Microwave Non-linear Networks: M. I. Sobhy,
E. A. Hosny and M . A. Nassef ................................................................... 67

Al•rractad/ndexed in "CAD/CAM AbStrfcs', 'Cambridge Scientific AbstraIcls'. 'Enginseeing fndex'. 'INSPEC%,'M.7lhsmsto¢41

Reviews'. 'Telecommunications Ab~stracnts'

93 4 20 13 7 93-08512

1JNFEX 6 (1) 1-82 (1993) i3U 3IN UIN •ISSN 0894--3370
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EDITORIAL

The direct time-domain modelling of electromagnetic fields and high-frequency circuits meets with
growing interest. Modem powerful computers make feasible the applications of time-domain
methods in the modelling of electromagnetic fields and networks. The advantages of time-domain
methods are their high flexibility, their potential to include non-linear effects and time-dependent
parameters, and their transparency with respect to concepts and algorithms. Time-domain analysis
elucidates the physical principles underlying the phenomena and supports a creative design of
circuits and systems. For these reasons, time-domain methods are of high interest for the develop-
ment of CAD tools for the modelling of microwave and millimetre-wave integrated circuits, and
broad-band microwave devices, antennas, circuits and systems. The combination of field concepts
and network concepts allows the segmentation of complex structures and to apply full wave
analysis to the segments.

This special issue is the second of three parts comprising contributions to the workshop on the
German IEEE MT"/AP Joint Chapter and the German IEEE CAS Chapter on Discrete Time
Domain Modelling of Electromagnetic Fields and Networks on 24 and 25 October 1991 at the
Technische Universitat Murnchen. The first part was published in vol. 5. no. 3 of the Journal. The
purpose of this workshop, organized by Peter Russet and Josef Nossek under the sponsorship of
the European Research Office (ERO) of the US Army. was to bring together researchers dealing
with time-domain simulation and transient phenomena in fields and networks.
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EFFICIENT ANALYTICAL-NUMERICAL MODELLING OF
ULTRA-WIDEBAND PULSED PLANE WAVE SCATTERING

FROM A LARGE STRIP GRATING
LAWRENCE CAIUN AND LEOPOLD B. FELSEN

Weber Research InstinuteElecnical Engineering Department, Polytechnic UniversirY. Farmuingdale. NY 11735, U.S.A.

SUMMARY

Ultra-wideband (UWB) pulsed plane wave scattering from a large but finite strip grating in free space is
analysed in the frequency domain via decomposition into plane wave spectra, implemented numencally by
the method of moments, and then inverted into the time domain (TD). To make this procedure practical
under UWB conditions, closed form expressions are derived for interaction integrals involving widely
separated expansion and testing functions. These closed forms are based on a judicious choice of the basis
functions, and on asymptotic methods for reducing the integrals. Although large separation distances are
assumed, the expressions have been found to be accurate for separations as small as 0,1 wavelengths, The
TD self terms can also be evaluated efficiently. To test the frequency domain algorithm. comparisons are
made with available data in the literature for surface currents and far-field scattering from multiple strips.
New short pulse TD results are shown as well.

1. INTRODUCTION

Plane wave scattering from a collection of periodically arranged elements continues to be a topic
of interest. Periodic arrays of patches or slots have been used for microwave and millimetre-wave
frequency selective surfaces.' Strip gratings have found use in optical spectrometers2 and as
dispersive elements in pulse compression systems.' Although truncated in space, the arrays are
usually electrically large and are therefore often treated by analysing an ideal infinitely periodic
array, In such studies, the problem reduces to the much simpler investigation of scattering
from a single unit cell. Recently. however attention has been given to the effects of array
truncation. ",4-7

Nearly all investigations of scattering from arrays of elements have been performed in the
frequency domair.1.4- With current interest in impulse or UWB radar.' the time-dependent
scattering of short pulses from such configurations is gaining in importance. Moreover, the
availability of picosecond and femtosecond lasers makes these studies relevant also t,, the interac-
tion of infrared or optical pulses with gratings. It is the purpose of this paper to develop an
efficient technique for the analysis and numerical calculation of UWB pulse Ncattering from a
large but finite collection of elements. The basic phenomena associated wit?' such scattering can
be modelled by the strip array prototype adopted here.

For UWB radars, the commonly accepted definition of a UWB pulse is one having a bandwidth
of 25 per cent or more with respect to the centre frequency.' For the present study, an alternative
definition is more appropriate: the UWB pulse must contain sufficicnt energy at wavelengths A0
ranging from \,0 4 D to Xo > D, where D is the characteristic size of the scatterer; this range of
wavelength accommodates at the extremes high resolution of local features as well as collective
wave phenomena associated with global features. To develop techniques for the general analysis
of UWB scattering from a large but finite collection of ele.nents, an array of planar strips in free
space has been selected as a prototype problem. For this case. which is of interest in its own right.
the characteristic size D for the UWB pulse is the strip width.

To analyse UWB scattering efficiently, special considerations must be addressed. If the problem
is first analysed in the frequency domain and then converted to the time domain via the Fourier
transform, thousands of frequency points are often required to get accurate time-domain results.
If one were to apply previously developed frequency-domain techniques"'" directly to such a

0894-3370/93/010003-15$12.50 Received 31 August 1991
(© 1993 by John Wiley & Sons. Ltd.



4 L. CARIN AND L. B. FELSEN

problem. the CPU time required would be so excessive as to make the analysis impracticable. To
avoid this difficulty. the present study utilizes a hybrid numericalianalytical technique. This
involves application of a spectral-domain formulation, with a moment method solution. Closed
form asymptotic expressions are developed for reaction integrals that contain expansion and testing
functions separated by 0-1k or more. This method leads to a highly efficient and accurate
procedure.

The paper is organized as follows. Section 2 deals briefly with the spectral domain formulation
of time-harmonic plane wave scattering from a collection of strips in free space. Sections 3 and 4
are concerned with the techniques proposed to make such a formulation practicable for UWB
pulsed scattering applications. In particular, the basis functions and integration techniques are
discussed in detail. Numerical results are presented in Section 5. Comparisons are made with
available frequency-domain data in the literature, followed by new time-domain results. Con-
clusions that can be drawn from this work are summarized in section VI.

2. FORMULATION AND FREQUENCY-DOMAIN SOLUTION STRATEGY

This section deals with time-harmonic plane wave scattering from a finite array of perfectly
conducting infinitesimally thin strips in free space. Referring to Figure 1. the surfaces of the
various strips are assumed to be perpendicular to v. and the fields in this two-dimensional problem
are assumed to be independent of -. Unlike previous studies that have performed the analysis by
using the two-dimensional free space (space domain) Green's function,.-` the problem is formu-
lated here in the spectral domain (with respect to x). This is done for two reasons: (i) as shown
in section 3. one obtains thereby a convenient and efficient asymptotic representation. and (ii)
this method is readily extended to more complicated configurations involving layered dielectrics.
Because spectral domain formulations have been used for several related problems.,- '' this section
contains only a brief summary of those issues which are of importance for the present investigation.

Assuming a plane wave incident obliquely on the strips in Figure 1. and applying the boundary
condition for the electric field on the perfect conductors, one arrives at the expression:

y x (E'+E•) =0 (1)

A bold-face symbol denotes a vector quantity and a tilde, later on. identifies quantities in the
spectral domain. The boundary condition in (1) is applied on the surface of each strip. Here.
EI(xy) is the incident vector electric field in the absence of the strips, while E3(x.,v) is the scattered
vector electric field produced by the electric surface currents J(x'.y') induced on the strips. The
scattered field can be expressed as (an e-1 time-dependence is assumed and suppressed henceforth)

E'(xy) = C(k.,y;y')" j(k.,y' )-Ik,(X-') dk, (2)

LF y

Figure 1. Example of a mulinlayer strip grating in free space
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where G(k•,y;y') and J(kxy') are the dyadic Green's function and surface current, respectively,
in the k, spectral wavenumber domain. The contour of integration C is assumed to run initially
along the real k, axis. Because the problem is two-dimensional, only a single component of surface
current (longitudinal or transverse) is induced for a given polarization (TE or TM.' 2 respectively).
Therefore, only a single component of the dyadic Green's function is required for a given incident
polarization. The required component of the spectral domain Green's function is

=Zh

6h(k,,y,;y') = zf C (3)

with ko = wt Vp.0, For TM and TE waves, respectively, it is well known that the wave impedances
are given by

Zh=

Z . . . .. (4)

The boundary condition in (1) is enforced numerically by first expanding the unknown surface
currents J(x',y') in a known set of basis functions fA(x.y') with unknown coefficients a,:

Nb
J(x'.y') = F, akfk(x'.y') (5)

k-l

By applying a Galerkin testing procedure"3 to (1). one obtains

f E '(x ,y ) f.f',(x ,,y ) d x ak f a, (k~ y ) .- C,(k ,y ;y ') .-fk(k , .y ) e " , r , , dk , (6 )

for m = 1, 2 ... , N,. Here. x, represents the location (in x) of the centre of the basis function
f,, and superscript * denotes the complex conjugate. The integral on the left side of (6) extends
over the surface S of a particular strip. By expanding the currents and applying the testing
procedure on each strip, an NxN, matrix equation is produced, where N,, is the total number
of basis functions. From this equation one can determine the basis function coefficients, and from
(5) and (2), respectively, the currents and scattered fields.

For a plane wave incident at angle O, (see Figure 1), EP(x.y) can be expressed as

E'(xy) =c eJkosin 0,- ejkoco ",, (7)

where c is a vector constant. For TE incidence, c is in the z-direction while for TM incidence. c
lies in the x-y plane but depends on the angle of incidence. Using Parseval's theorem, the left
side of (6) can be evaluated trivially as

Ei(x,y)- f*(x,y) dx = eJknci• O, e11,,, s ,i(k,.= -k,, sin @,.y). c (8)

One usually selects basis functions that have closed form spectral domain representations; therefore
the computational effort in this formulation involves the numerical evaluation of the integrals on
the right-hand side of (6).

3. FREQUENCY-DOMAIN IMPLEMENTATION FOR UWB SIGNALS

The integrals on the right side of (6) can be expressed in the generic form

M,,, = fh(k,y,,,yk) e-k• e-1k,., dk, (9)



6 L. CARIN AND L. B. FELSEN

where A, = jy,,-ykj and A = x,,-x;. Here. y,, and y• locate the position in y of testing function
m and expansion function k, respectively. For UWB applications, the separation I. = ýA2+A2
between expansion and testing functions will range from zero to several wavelengths. Therefore.
to make the analysis of UWB pulse scattering practicable, special considerations are required for
the evaluation of integrals of the form in (9).

3.1. Basis functions

Because integrals as in (9) must be calculated over an ultra-wide bandwidth and the efficiency
of such integrations determines the ultimate speed of the algorithm. it is desirable to derive a
closed form asymptotic expression for (9) when L is large relative to wavelength. As will be
demonstrated below, it is possible to derive such an expression that is accurate even when L is a
small fraction of a wavelength.

Success in this endeavour is dictated in large part by the choice of basis functions. It is desirable
to use basis functions with simple spectral-domain representations. For this reason, the complete
domain basis functions chosen here, which do not explicitly enforce the edge condition, are

[fk7(_x'_t'W12)1 Wj
MX') = sin -i f X (0)

where V4 is the strip width. Note that in (10), the explicit y' dependence of fk(x,.v') has been
suppressed. This y' dependence is manifested in the fact that. in general. the strip width W will
be different for each strip and therefore will depend on the layer in which the strip is located.
The spectral domain representation of fk(x') is

fk(kj) = j sin(k,W12)sk(k,) (11)

for k even, and

fk(kX) = cos(kWI2) sk(kj) (12)

for k odd. with sk(k,) defined as

1(13sk(k,) = _(-1I ~ (-1)k (13)
k .- ýw T k ,+ T

The spectral representation of the basis function therefore consists of a trigonometric function
which, in general, varies rapidly with respect to the remaining algebraic expression sk. It should
be noted that the commonly used triangular subsectional basis functions also can be written as
the product of a rapidly varying trigonometric function and a function that varies slowly in
comparison. Since many subsectional basis functions are usually required per wavelength." they
were not chosen for the present investigation into UWB scattering.

3.2. Asymptotic representation

The integrals that need be evaluated can be grouped into two types: (i) for TM waves

M",= __ f.,(k,) Fk-2,fik2 )e Y i-, 12-, e-A,, dk, (14)

and (ii) for TE waves
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1 = Wf1a P(k.) re-''. kk, e-' dk. (15)

By grouping the trigonometric parts of the basis functions, after decomposition. with the
exponentials in (14) and (15), I/ and I.' each can be expressed as a sum of integrals of the
form

V f( -k2 -k0s,(kx)s,(k.) e - - e-jA-a- elknw dk. (16)

and

; . s_(kjSk(k.) e e JkAej dk. (17)

respectively, with n either 0, 1, or -1.
These integrals can be approximated to a high degree of accuracy using standard asymptotic

techniques."4 It is convenient to introduce the following change of variables:

Llsin0 A, + nW, Ll cos 0-- A_ ,. F_ \(A.+nW)2 +,ý. k, = kosin 4 (18)

which transforms (16) and (17) into the following simpler equations (see Reference 14 for the
integration path in the 4-plane):

Kl* ow.o js,,(ýsk(4)cos` t• e-lil 0-4 d/• (19)

= d4 (20)

with fl = koL,. These integrals are evaluated most efficiently along the steepest descent path
(SDP) with saddle point at ; = 0.14 By performing a first-order asymptotic evaluation of (19)
and (2) around the saddle point, one finds

K'W-U)P-0 1 6 s,,(kl=kosin 0)sk(k,=kosin 0)cos- 0 1 e l"e-'" (21)
2I2r

K;!;Ekwto ý7_7_ s8(k,=ko sin@) Sk(k.=ko sin, 0) el' el"" (22)

Inspection of (21) reveals a problem: for the important case of 0 = t+r/2 (expansion and
testing function on the same plane), (21) predicts 11 = 0 for all m and k. This is because an x-
directed current will have no far-field x-component of electric field along its axis, Therefore the
first order approximation in (21) is only valid in the far field. A second-order asymptotic evaluation
is in general quite difficult. However, for the special case of 0-±n/2, a second order approxi-
mation of (19) readily yields

hr jlt-o s,(k=ko sin O)sk(k.,=k, sin 0) e-" el"' (23)

To perform higher-order asymptotic evaluations, one approximates the slowly varying part of the
kernel with a few terms of its Taylor series, and therefore one must differentiate the slowly varying
term of the kernel."' This is trivial for the kernel in (19) when ý = ir/2 because the derivatives
of s,(;) and sk(ý) drop out in view of the vanishing of the cos2(ý) term. This fact was used to
derive the approximation in (23) for -=-rr/2. A thorough test of (21)-(23) has been performed



8 L. CARIN AND L. B. FELSEN

for a wide range of strip widths and separations. It has been found that these expressions give
good agreement with the numerical evaluation of (14) and (15) for strip separations greater than
0-1Xo. As an example, a comparison between the asymptotic expressions and numerical integration
is presented in Figure 2 for 173. Good agreement is seen over the entire bandwidth. Likewise,
results for the induced currents and scattered fields computed from (21)-(23) in both the time
and frequency domains were found to be in nearly complete agreement with results calculated by
the numerical integration of (14) and (15) (less than 1 per cent difference). As a practical matter,
it should be pointed out that one must use L'Hopital's rule for kJ, sin 0=-t-krriW to get good
agreement over the entire bandwidth.

In summary, use of the asymptotic expressions to replace strictly numerical procedures results
in a tremendous reduction in CPU time when considering UWB plane wave scattering from a

.Kj..... • I a)

"200• OCCO 1a)

Re (I Tv)
i/ -i Ii I

1 0• ... C• . "

2' 000000.

00O 0 CO
WIX.

(b)

IM (I'73)

0 " G 0 .0 1:0•O •,G

U 0000

W/k,

Figure 2. Real and imaginary parts of UTM V. WIý,. where Xý 21T/k. is the free space wavelength, and the strip separation
equals the sitrip width W. The solid line represents the numerical evaluation of (15) while the dashed line represents the

asymptotic approximation. (a) Real part. (b) imaginary part
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collection of strips. This is true especially when the expansion and testing functions are separated
by a wavelength or more. The accuracy of the asymptotics, as confirmed by comparison between
the numerical and asymptot.c evaluations of the integrals, is achieved only when the trigonometric
parts of the spectral basis functions are grouped with the exponential functions. This is because
the trigonometric parts of the spectral basis functions may have variations equal to. or greater
than. those of the exponential functions, therefore, they must be combined with the rapidly varying
parts of the integrands when applying asymptotics.

3.3. Integration along SDP

For expansion and testing functions separated by less than 0.1,,. the asymptotic forms in
(21)-(23) are less accurate and another efficient means of evaluating (14) and (15) is required.
For such cases. (14) and (15) are evaluated numerically along the SDP. 14 Although this is obviously
more time-consuming than evaluation of the closed form expressions (21)-(23), it is more efficient
than performing the integral along the real k, axis.

3.4. Self term

The above-mentioned techniques are useful for expansion and testing functions separated in
space. and hence associated with different strips. For the self terms, however, the expansions and
testing functions occupy the same strip and are therefore not spatially separated (A, = A, = 0).
Again (14) and (15) can be reduced to a sum of integrals of the form in (16) and (17), respectively.
However, since A. = 1, = 0, (21)-(23) are not valid for n = 0 or for W < 0.gXo,. In a related
problem, it has been demonstrated that integrals of the form (14) and (15) vary slowly with
frequency when At = A = 0.' This can be unde.stood by realizing that the self terms sample
essentially the near fields of the expansion function, and the near fields generally vary less strongly
with frequency than their far-field counterparts.

UWB scattering requires very fine sampling of the frequency spectrum in order to furnish
accurate time-domain results. Realizing that (14) and (15) vary slowly with frequency for
A, = A, = 0, the self terms' integrals need be computed only at points along a relatively coarse
frequency grid. The values of the integral between points along the coarse grid can be computed
accurately by use of a simple extrapolation procedure. 9 This technique of computation for the self
terms over an ultra-wide bandwidth has been applied in the results to be presented subsequently,
and it leads to significant reduction in CPU time.

3.5. Summary of integration techniques

In summary, for expansion and testing functions separated in space by 01.X(, or more, the
asymptotic expressions (21)-(23) are used for the computation of the reaction integrals. For
expansion and testing functions separated in space by less than 0-1,A. numerical integration is
performed along the SDP. The expressions (2l)-(23) require virtually no CPU time; the inte-
gration along the SDP is very efficient and less time-consuming than real axis integration. The
time-consuming part of the algorithm for UWB applications involves the computation of the self
terms. Realizing, however, that these integrals vary slowly with frequency, the self terms are
computed only at points along a relatively coarse frequency grid. All self term integrals at
frequency points between the grid points are efficiently computed using linear extrapolation. It
should also be noted that due to reciprocity, there are many redundant integrals in the moment
method matrix. Taking advantage of this redundancy and using the integration techniques summar-
ized above, UWB pulsed plane wave scattering from a collection of conducting strips becomes
tractable. It is believed that these and related techniques can be extended to other classes of UWB
scattering problems.
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4. INVERSION INTO THE TIME DOMAIN

In order to obtain accurate results for UWB pulsed plane wave scattering, it is necessary that a
sufficiently large number of frequency-domain points be used before Fourier transforming into
the time domain. The integrals which vary most rapidly with frequency will be those associated
with the most widely separated expansion and testing functions. An estimate of the required
number of frequency points required can therefore be found by examining (21)-(23). The term
in these expressions having the most rapid variation with frequency is e-0'•. Assume that L, = L,.
is the largest separation encountered in the problem under study, and that W.•ax is the highest
frequency component needed to resolve the incident pulse. The term e -plL... will therefore range
from 1 to e-jko reLmax, where k, .. is the free space wavenumber at W,.,I. If N frequency points
are taken per period of oscillation, then Nko maxLmaxi 21T frequency samples are required. Here is
an example of what this implies: for Lmax = 0-3 mn. w,.x = !8-3 rad/s (100 GHz). and N = 10.
the frequency spectrum must be discretized from 0 to 100 GHz in 100 MHz increments. This
explains why it is essential that the frequency-domain results be computed as efficiently as possible.

The above considerations apply only to time-domain quantities computed directly by the moment
method procedure described earlier: the time-dependent currents. To compute the scattered field.
other considerations are necessary. In the far-field approximation. the time-dependent scattered
fields are computed from integrals of the form

E(x.y.t) = jhNx~w) e - ,1- e-1 dw (24)

where r is the distance from the centre of a given strip to the observation point (x.y). The
expression h(x,vy,w) is a function of the surface currents w-ihich are properly described in the
frequency domain by the discretization procedure discussed above. If the observatior. distance r
from a given strip is larger than L, (as it usually will be), then e-)k,r will vary mor. quickly
than e -kot..., and the frequency discretization may not be sufficient to describe the time-
dependent scattered fields accurately. A very simple procedure can be used to overcome this
difficulty. Equation (24) can be rewritten as

E,(xy,-y) = fh(xy.w) el'Y dw (25)

where -y = t-r/c. The expression h(xy.w) involves only the basis functions and the Green's
function for observation of the fields on the surface of the strips. The discretization required to
resolve Ej(x.y,-y) is the same as that required of the currents, and E(x.y,t) can be found easily
by shifting E1(x,y,-y) by a time r/c.

It should be noted that the far-field approximation will in general not be valid for significantly
low-frequency components associated with a given incident pulse. However. pulses radiated by
practical antennas often have a weakly excited low-frequency spectrum so that (25) remains
applicable for scattered field evaluation in most observation regions of interest, including those
relatively close to the array (but 'far' from each strip). All time-dependent fields in the present
study have been computed using (25) in conjunction with the FFT.

5. RESULTS

5. 1. Frequency domain

To the authors' best knowledge, there are no results in the literature for UWB pulsed scattering
from a collection of strips. Therefore. to check the accuracy of the computer code, comparisons
have been made with available frequency-domain results. For all frequency domain calculations,
a total of 12 basis functions was used per strip. For I'M and TE incidence, respectively, Figures
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3(a) and 3(b) show the normalized currents induced on three coplanar strips by a normally

incident plane wave (0, = 0). The strip widths and separations are X)14. The calculations reveal

good agreement with data computed by Cwik and Mittra." It is of interest to examine how the

trigonometric basis functions resolve the edge condition for the case of TE incidence, From Figure

3(b) it is seen that the calculated currents oscillate around the solution found when the edge
condition is used in the basis functionsis (dashed curve). As the number of trigonometric basis

functions is ir.creased on each strip, the oscillations become more closely confined around the
dashed curve. Although, for the TE case, a large number of basis functions is required to obtain
adequate convergence for the currents, it has been determined that 12 basis functions are sufficient

to obtain convergence for the scattered far fields (to better than I per centj, Therefore. the far

fields are not sensitive to the above discrepancies in the surface currents-

,2• (a)

Ill. IH,, I

1) 0

Figurec 3. Normalized surface currents introduced by TMt and TE plane waves, incident v~ertically on three %trips of strip
width and separation equal to XV4- The solid line represents the results of this work and the squares represent results
from Reference 4. (a) TM polarization. (h) TE polarization. The dashed line was computed b.; including the edge condition

in the basis funcitons
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Figures 4(a) and 4(b) show the scattered far field due to a TM and TE plane wave, respectively,
incident at O, = 60° upon five coplanar strips. The strip widths are 0-1k) and the separation
between consecutive strips is 0.4k•. These results can be compared with data computed recently
by Matsushima and Itakura (Figures 6(a) and 6(c)).f It is difficult to transfer the data accurately
from the figures in Reference 5 (because of their small size), but excellent agreement is noted
upon comparison. It is worth mentioning that the basis functions in Reference 5 for TE incidence
satisfy the edge condition while those here do not. Nevertheless, the agreement between Figure
4(b) and the results in Reference 5 is excellent for all observation angles except very near trn/2
(abrupt drop in the pattern of Figure 4(b)). The discrepancy over this very small range of
observation angles. which may in fact be due to the edge condition deficiency of the basis functions
in (10), does not detract from the utility of the algorithm employed here.

5.2. Time domain

To demonstrate the capabilities of the numerical code for UWB pulsed scattering from a large
collection of strips, TE and TM scattering from !5 coplanar strips in free space has been considered.
The strips each have width W and separation 2W/3. The incident pulse, normalized to the width
W, and its frequency spectrum are shown in Figure 5. All time-domain results are plotted as a
function of r. where -T is the time required by a plane wave to travel a distance W in free space.
Note that the incident pulse has a temporal length shorter than T so that it is capable of resolving
individual scattering from the strip edges.

The 15 coplanar strips are identified as follows: the centre strip is defined as strip 0. the seven
strips to the right of the centre strip are labelled I to 7 from left to right, and the seven strips to
the left of the centre strip are labelled -I to -7 from right to left. rhe r = ) time reference is
defined as the time when the incident pulse reaches the centre of strip 0. Figures 6(a) and 6(h,
show the scattered fields produced by TM and TE plane waves. respectively, incident at an angle

-, 20°, The scattered fields are observed at a distance 50W/3 directly above the centre of strip
0, and the scattered field amplitude is normalized to the peak amplitude of the incident pulse. In
addition, the left edge of each strip is labelled 'a'. while the right edge is labelled 'b'. On each
strip, the incident pulse will first hit edge 'b" and subsequently edge 'a'. In Figures 6(a)•and 6(b).
the travel time of a wavefront along a straight line from a given edge to the observation point is

Inc

1.0 .5 G. 1.0

N .~ Inc:1e

1.0 .5 0 .5 10

Figure 4. Normalized scattered far field due to TM and TE plane waves incident on five coplanar strips of width 0.1t,
and separation 14\,' The waves are incident at 0, = 6(or. a) TM polarization. (h) TE polarization



ULTRA-WIDEBAND PULSED PLANE WAVE SCATTERING 13

C 0,0 -,

a

'000 4-

S0.000 i

Oatsr

"C'O0-

: /

4

:2200 J.

0 00 o o . . . . . . . . .. •. .. .......... ]" '

000 200 c0 600 3 00

Figure 5. Incident plane wave pulse and its corresponding normalized frequency spectrum. (a) Pulse shape v. Oir, where
T is the time required for a plane wave to travel a distance W (strip width) in free space. The pulse consists of three
sections of a sine wave. with two lobes of equal amplitude I below the zero axis and one lobe of amplitude 2 above the

zero axis. (b) Normalized frequency spectrum v. WIXj

labelled for all strips to the left of centre. Note that as one moves further to the left along the
strip array, the scattered pulses from individual edges become more distinct. It can be shown that
for the chosen strip distribution and incidence angle, the scattered wavefronts from the edges of
strips 0-7 arrive at the observer at nearly the same time; therefore, these signals are not individually
resolvable. It is also interesting to note that the waveform scattered from a given edge is different
for the TE and TM cases. For the TM case, the scattered field from edge 'b' is weaker than that
from edge 'a', whereas the opposite is true for the TE case.

The coplanar strip array has two scales: the strip width and the strip separation. By considering
the late-time response, and focusing on the time delays between the series of repetitive waveforms,
one can develop a scheme by which these two scales of the scart .ing cells can be estimated from
the data. The time delay between consecutive strong and weak signals gives information about
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Figure 6. Time-dependent scattered fields due to TM and TE plane wave pulse in Figure 5, incident at 0, = 20' upon 15
coplanar strips of equal width W and separation 2W13. The strips are labelled as follows: the centre strip is strip 0. the
seven strips to the right of the centre strip are labelled I to 7 from left to right. and the seven remaining strips are labelled
-I to -7 from right to left. The left edge of each strip is labelled 'a' the right edge is labelled b. The travel times. to
the observer, of wavefronts from the edges of the seven strips to the left of the centre strip are identified by arrows. The
time reference t = 0 is the time at which the plane wave first hits the centre ,f strip 0. and the observation point is SOW/3

directly above the centre of strip 0. (a) TM polarization. (b) TE polarization

the strip width, while the time delay between consecutive large (or small) pulses gives information
about the strip separation. It is believed that the insight gained from such simple investigations
will be useful fk understanding the scattering of UWB pulses from a more general class of
scattering configurations. A detailed analysis and explanation of these and other results obtained
with the present algorithm will be submitted separately for publication.' 6 "l

Finally, some observations are made about the time-dependent surface currents induced on the
strips. In Figures 7(a) and 7(b), respectively, are shown the induced currents on strip 0 for the
TM and TE cases investigated in Figure 6. The currents are plotted as a function of time at three
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Figure 7. Time-dependent currents induced on the cenrte strip of the IS-strip array by the TM and TE pulsed plane waves
in Figure 6. Curves I. 2. and 3 are for positions x = W/4. x = 0, and x = -W/4, respectively, on a strip of width W with

centre at x = 0. (a) TM polarization. (b) TE polarization

locations along strip 0: at x = -W/4. x = 0. x = W14 (with the strip centre at x = 0). The TM
incident wave induces surface currents which propagate in the x-direction. and can therefore be
expected to give rise to resonances between the strip edges. For the TE case, however, the induced
currents are longitudinal (z-direction) and are therefore expected to interact less strongly between
the strip edges. These expectations are confirmed upon examining Figures 7(a) and 7(b), where
the late-time oscillations in the TM case are much more pronounced than in the TE case.

The 15-strip results above were computed on an IBM 6000 RISC workstation with 12 basis
functions used per strip. The time-dependent data required calculations at 2500 frequency points
(before inversion to the time domain), with results obtained after about 6.5 hours of CPU time
(for an average of less than 10 CPU seconds per frequency point).
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6. CONCLUSIONS

An efficient formulation has been developed for the analysis of UWB pulsed scattering from a
large collection of planar strips in free space. By the spectral domain solution strategy, which has

been summarized in section 3.5, closed-form asymptotic approximations have been derived tfr
reaction integrals involving expansion and testing functions separated by greater than O. 1kb. This.
coupled with the extrapolation procedure used for the self terms, dramatically reduces CPU time
and makes ýie analysis of UWB scattering tractable. The procedures developed in this paper have
been applied to a broad parametric study of UWB scattering by different arrangements of
strips, to various processing techniques of the time-domain data, and to direct and quantitative
interpretation of the data by time-domain wave processes. These investigations will be published
separately.16-"7 It is also intended to extend the algorithm discussed here to more complicated
environments involving dielectric layers. The information gathered from these explorations may
find use in the interpretation of UWB radar data from large periodic and quasi-periodic multi-
scale environments, such as ocean waves.
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SUMMARY
We show the derivation of parameters in the frequency domain from time-domain data. Far-field character-
istics are obtained by a convolution formula with the harmonic field amplitudes, which are obtained via a
Fourier transform or by sampling. The electric field of filter ports is expanded into the discrete eigenmodes.
By this method, a monochromatic exact open boundary can be formulated and the fields divided into the
incident and the reflected part. For wide band operation an a posteriori error correction scheme is presented.

INTRODUCTION

The analysis of electromagnetic components can typically be subdivided into two tasks. First the
mathematical problem is defined and solved yielding the electromagnetic fields as a function of
one temporal and three spatial co-ordinates. The second task, we focus on in this paper, consists
of reducing and filtering the result.

One common method of eliminating the time-dependency is to assume harmonic time-depen-
dence. In the case of constant, time-invariant materials Maxwell's equations are decoupled for
different frequencies and transform to quasistatic differential equations. Furthermore derived
parameters such as wave amplitudes are used to describe the solution in order to obtain a
formulation, which is analogous to a discrete network.

The direct solution of the frequency-domain problem using finite differences or similar methods
has the following disadvantages. The equation system is complex and therefore twice as large as
in the time domain. When calculating near-resonances the algebraic condition may become very
bad. One has to eliminate the spurious, non-physical solutions. Also we have to repeat the solution
process for each frequency.

The alternative is to calculate the time-domain response of the electromagnetic component and
to derive the frequency-domain parameters. In the following we show the calculation of far-field
transforms and scattering parameters with some applications. For the numerical solution, the finite
integration algorithm for the spatial discretization in combination with a leapfrog scheme for the
time integration was used."12

FAR-FIELD CHARACTERISTICS

One disadvantage of finite difference and finite element methods is that all computations are
restricted to a finite grid. Part of this problem can be overcome by introducing radiation boundary
operators simulating an infinite mesh size. The direct calculation of far-field characteristics of, for
example, antennas is still infeasible, since the grid has to be extended to distances, where the
near fields have ebbed off.

Therefore we have to strip off the electromagnetic fields inside the grid of their near-field parts.
The far field then can be written as

e-kr

a plane wave in radial direction with the far-field transform F (0. b) as the directional pattern.

0894-3370/93/010019--09$09.50 Received 25 November 1991
(g) 1993 by John Wiley & Sons. Ltd. Revised 23 March 1992
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Figure I. Integrauton surfacc around raditor

We include the radiating structure in a volume as shown in Figure I and substitute the radiating
sources by equivalent electric and magnetic surface currents, given by the tangential electric and
magnetic components along the surface. The far field can be calculated by convoluting the surface
currents with the far fields of elementary ele-tric and magnetic dipoles:'

F( 4= 4k ,nv em"' ex(,x- e,x (n x E) IdA (2)

where n is the normal to the integration surface. e, the normalized radiation vector and r' the
point of integration. E and B denote complex time harmonic electric and magnetic field amplitudes
respectively.

The time harmonic field amplitudes can he obtained either by using a time harmonic excitation
and sampling

= E(to) - jE(t,, + T14 (3)

B(to) - jB(t,, + T/4) (4)

(T denotes the length of the harmonic period and to has to be a time. where the fields have
reached their harmonic state). or by an on-line Fourier transform.

FAR FIELD OF A CORRUGATED HORN

As an example we show the calculation of the far field of a corrugated horn. The structure shown
in Figure 2 is rotationally symmetric and was calculated in rz-geometry using 65.000 mesh points.

R

Figure 2- Geometry of the corrugated horn
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As excitation a pulsed sine wave was used. The geometrical parameters. normed with the design
frequency ko = W(/c, are

inner diameter of waveguide bk, 3.25
steepness 0 10W
number of grooves N 72
depth of the grooves /K,) 0-27
distance between two grooves iV, )-1
width of the grooves 1,/X, 0.067

Figure 3 shows the time response of the radial field on the horn axis. The time harmonic fields
were calculated by a Fourier transform.

Figure 4 shows the far-field transform in a polar plot and Figure 5 in a logarithmic scale. For
comparison the results calculated by R. Erb6 by a mode-matching technique are drawn as a dashed
line. Both results show good agreement except near 90 degrees. This is due to a different modelling.
R. Erb assumed radiation into a halfspace with an infinitely conducting screen, whereas here a
finite structure was calculated.

SCATTERING PARAMETERS

When describing multiports. we have discrete ports and a discrete spectrum of eigenmodes which
set up the field inside the waveguides connecting the multiport to other components. So we use
a scattering matrix

[_O(jW)b 2(jW)..._,,(j )Jt = S [91(j-) 92 (jW)...a.,(j-)]' (5)

to describe the relationship between incoming and reflected wave amplitudes.
The transverse electromagnetic fields are described in the frequency domain by a superposition

of incoming and reflected waves

4.608-0 6.mm.

"r 3 " i t I I

eS MP|.2Iql.,e40 4.nH.*$I.4 6.S.U• 5. 4-00S.• ,4

Figure 3. Field in the horn aperture v. time
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Figure 4. Polar plot of the far field ( Ed-plane)
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Figure 5. Loganthmic plot of far field (dashed line results by R. Erb)

Ev (xy jw)E(r, ow) = ( .j~)[a(jwo)e --*,,.tie,.ih + b_ (jw)e•(Ji.z] (6)

with the real power normalization factor

fM(jw) = \If IJ E .(x,y.j,) x H1(x~y,jw)IdA (7)

For the further derivation we use the weighted wave parameters _ (jw) = a,(jW)/f.(jW). k.,(jw)
&.(jew)/f.(jw) and formulate the time-domain equation
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E(r, 1) = E,(x,y,t) * [,•(t) * Pj(t,z) + b,(t) * Pý(t, (8)

with a double convolution. The frequency dependencies have been replaced by time dependencies
and

P*~,z) = e-,i)eJ dwo (9)

describes the waveguide propagation. In homogeneously filled waveguides we can find frequency-
independent transverse fields E,(x,y) that are orthogonal.

With this in mind we look at the following model of a transmission line (Figure 6). z = 0
denotes the outermost grid line at the waveguide port. z = 8z is the grid line one step inside and
A(t) and B(t) are the transverse electromagnetic fields. Both can be expanded in terms of the
discrete two-dimensional eigenmodes (Aj(t), B,(t)). The coefficients are composed of an incident
and a reflected wave amplitude:

z = 0: A&(jw) = d_(jw) + _,(jt) (10)

z = Sz: B,(jw) = d_(jW)P,(j)-' + 1,,(jW)_,(jt) (11)

with

_,(jto) = e (12)

We can realize boundary conditions, that are exact for at least one frequency WM when we
approximate the propagation filter P_(jo) by a recursive digital filter P'(jw) similar to classic open
boundaries'. 5 with &.(jiM) = Pe'(jwM). With this filter we write analogue equations for the
approximated wave amplitudes

z = 0: A_(jw) = d'(jw) + _/-(jw) (13)

z = 8z : 8.0(jw) = 4-'(jLo) ;(jw)-' + tb;(jw) E_(jw) (14)

and formulate a recursion for the unknown reflected amplitude

b.(t) = P'(t) * [B,(t) - P'(t). * a•'()1 (15)

The quality of the boundary condition is determined by the filter approximation, but we can
calculate the true (weighted) wave amplitudes CUM(j), &Ow) in a correction step after the time-
domain field calculation. The amplitudes A4(jw), B,(jw) have a real physica' meaning, so it is

possible. to substitute them in the above equations to yield the following relationship

Z 0 z=6z

[a,(jW)P2 (jw) ...a(jw)1'

[b1 (jW)A(jW4)...(j)JT I

A(t) B(t)

Figure 6. Model of a transmmiion line
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&0I Mitf() fdI (16)
L ,(iW).1 1= _(W) [ ,(j))- _p,,(j) L_)) (i)J (jo)1

By this technique one can calculate a set of vectors {aq(jw) aq(jw)..a.(jw)j' and [b,(jw)
b2(jw)...b_.(jw)j1 for different stimulations [-1j(jw) 4(jw)-...4((jw)]' to solve the scattering matrix
S.

BAND-STOP FILTER

As an example the results calculated for a waveguide band-stop filter operating in the X-band are
shown in Figure 7. In Figure 8 we have the measured and in Figure 9 the calculated transmission. 7

For comparison, results calculated by a mode-matching technique are drawn in with a dashed
line.8

For a better estimatior of the error the curves are shown in Figure 10 using a range of
transmission from 0 to - 5 dB. It can be clearly seen, that the results agree within 0-15 dB.

CONCLUSIONS

In this paper we have presented two methods of deriving frequency-domain results from time-
domain data. Far-field characteristics are calculated by applying a convolution to the tangential
time harmonic electromagnetic components on the surface of the radiator. These fields can be
either sampled, using a monochromatic excitation, or obtained via a Fourier transform.

For the calculation of scattering parameters. we perform a mode expansion of the electromag-
netic fields inside the ports. The a.odal coefficients can be used to obtain an exact open boundary
when using narrow-band signals and contain all information of incident and reflected wave
amplitudes. The systematic error introduced due to the inexact open boundarie. in a wide band
range can be compensated by an a posteriori error-correction scheme.

0.0 -

-20.0 - - -

S-30.0 
-"

-40.- - - - - - -- - - -

9.2 9.4 9.6 9.8 10.0 10.2 10,4 10.6 10.8 11

f/GHz
Figure 9. iJculated transmission (dashed line results obtained by mode matching)
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0.01

-- 1.0

-4.04

8.0 90 10.0 11.0 12,0 1
f/GHz

Figure 1.0. Calculated transmission (dashed line results obtained by Mode matching)
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SUMMARY
The Hilbert space representation of the TLM method for time-domain computation of electromagnetic fields
and the algebraic computation of the discrete Green's function are investigated. The complete field state is
represented by a Hilbert space vector. The space and time evolution of the field state vector is governed by
operator equations in Hilbert space. The discrete Green's functions may be represented by a Neumann series
in space- and time-shift operators. The Hilbert space representation ailows the description of the geometric
structures by projection operators. too. The system of difference equatioi governing the time evolution of
the electromagnetic field in configuration space is derived from the operator equation for the field state
vector in the Hilbert space.

I. INTRODUCTION

The TLM (transmission line matrix) method developed and first published in 1971 by Johns and
Beurle is a discrete time-domain method for electromagnetic field computation.'- 3 In this paper.
the Hilbert space representation of the TLM method is presented and applied to the algebraic
computation of discrete Green's functions. The Hilbert space representation is a very general and
powerful concept in field theory. 4 Whereas in the electromagnetic theory Hilbert space methods
are mainly used for solving the field equations. as, for example, in the moment method.' in
quantum theory, the fundamental theoretical concepts have been formulated in Hilbert space.r'-7

The state of a discretized field can be represented by a vector in the Hilbe~t space. The
specification of the mesh node connections and the boundary conditions is done by operators in
the Hilbert space. The Hilbert space representation also allows the description of geometric
structures by projection operators. The space and time evolution of the field state vector is
governed by operator equations.

In field theory, field propagation in spatial domains may be treated using Green's functions.'
The concept of Green's functions may also be applied to discrete time-domain field computation.'
Discrete time-domain Green's functions allow the modelling of the relation between the field
values on the boundaries if knowledge of the field in the spatial domains beyond the boundaries
is not required.

In this paper, the algebraic computation of the discrete Green's function is investigated. Our
approach is based on a Hilbert space representation of the space- and time-discretized electromag-
netic field. The discrete Green's functions may be represented by a Neumann series in space- and
time-shift operators. The system of difference equations governing the time evolution of the
electromagnetic field in configuration space is derived from the operator equation for the field
state vector in the Hilbert space. First results are presented for the two-dimensional case.

2. THE TWO-DIMENSIONAL TLM METHOD

The electromagnetic field is discretized within space and time. The space is modelled by a mesh
of transmission lines connecting the sample points in space. The field computation algorithm
consists of two steps:

0894- 3370/93/010029-17$13.50 Received 15 November 1991
(C 1993 by John Wiley & Sons, Ltd.
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* The propagation of wave pulses from the mesh nodes to the neighbouring nodes.
* The scattering of the wave pulses in the mesh nodes.

In the following, we restrict our considerations to the two-dimensional case with the transverse
electric field. In the shunt TLM model, voltage wave amplitudes are used instead of total voltage
and current. The voltage wave amplitudes of the incident and the reflected waves are given by

ka, and 4b-.. The left index. k. denotes the discrete time co-ordinate and the right indices.
m and n, denote the two discrete space co-ordinates. We consider the TLM mesh to be composed
by elementary TLM shunt node four-ports as shown in Figure I. where each of the four arms is
of length Al/2. The scattering in this elementary four-port is connected with the time delay At.

The scattering of the wave pulses is described by

1,, t orJ UI ,l•
b, a,

A. 1 64 ... a4

with the scattering matrix S given by

I,2)

,= , - - (

With the scattering, a time delay of At is associated and therefore, the time index. k, is incremented
by one. The scattered pulses are the incident pulses of the neighbouring elementary cell. This is
described by

•I,+~ = -,b • +

,. I (3)

3. THE DISCRETE FIELD STATE SPACE

In the TLM model, the field state at a given discrete time is described completely by specifying
the amplitudes of the four wave pulses incident to each mesh node. The space of the voltage wave
amplitudes of the incident and the reflected waves a,.., and •b..... is the four-dimensional real

4

11 2

n

3 m
Figure I. A two-dimensional TLM shunt node four-pori
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vector space A. In order to develop our formalism in a more general way we introduce the four-
dimensional complex vector space V for representing the wave amplitudes Aa,,,. and b,,.,.

In order to describe the whole mesh state, we introduce the Hilbert space A_ which allows the
mapping of each mesh node onto an orthonormal set of base vectors of X, The time states are
represented by the Hilbert space X,. With each pair of discrete spatial co-ordinates (m.n) a basis
vector of WC is associated and with each k, a basis vector of X, is associated. We now introduce
the state space 'X given by the Cartesian product of T', ,, and k,

X f4 ® ,, ® I, (4)

The space X is a Hilbert space, too. The complete time evolution of the fielo state within the
whole three-dimensional space-time may now be represented by a single vector in A. Using the
bra-ket notation introduced by Dirac." the orthonormal basis vectors of 'K are given by the bra-
vectors Ik~m,n). The ket-vector (k;m,nI is the Hermitian conjugate of Ik:mn). The orthogo, ality
relations are given by

(k,,mrn ,Jnlk.;m,.n,) = 8 , .,..5•. (5)

The incident and reflected voltage waves are represented by

a,

1a) = - k:m.n) (6)

A - 4 04

and

1b) = b" lk:m.n) (7)
J. b, m~

in the Hilbert space X. We define the shift operators X. Y and their Hermitian conjugates X'
and Y' by

Xlk~m.n) = ikml+ 1.n)

Xlkm~n) = lk:m- ln)

Ylk;mn) = Ik:m.n + 1)

Y t lk;mn) = Ik:tn.n- 1) (8)

The operators X and Y shift the field state by one interval A/ in the positive m- and n-direction.
respectively. Their Hermitian conjugates XV and Y' shift the field state in the opposite direction.

We define the time shift operator T. The time shift operator increments k by 1. i.e. it shifts
the field state by At in the positive time direction. If the time shift operator is applied to a vector
lk;mn). we obtain

Tlk~mn) = lk + 1enm) (9)

We introduce the connection operator I given by

0 X 0 0

X" 0 0 0
0 0 0 V (10)

0 0 VY 0

With the connection operator F, equation (3) yields the operator equation
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b)= n) ( )

describing the mesh connections. The operator r is Hermitian and unitary:

F = r, = r-, (12)

Therefore we obtain from equations (11) and (12)

Ja) = r Fb) (13)

We now express equation (1) in the Hilbert space notation by

1b) = T S 1a) (14)

This equation describes the simultaneous scattering within all the mesh node four-ports according
to Figure 1. The scattering by a mesh node causes the unit time delay At.

Figure 2 shows an example of a spatial domain within a TLM mesh. This spatial domain is
specified by a given set of mesh four-ports. A spatial domain D in our TLM mesh may be specified
by projection operators. We define the domain projection operator Pl, which projects a state
vector 1a) on the domain D:

Plaa) = 1a),, (15)

This projection operator may be written in dyadic notation as the sum of the projection operators
on the nodes belonging to the domain D:

5= ' Vk:m.n)(k:rn.n! (16)

...E: L) E 1)

In the same way. we define the inner domain projection operator P, and the boundary projection
operator by

P, Ia) = Ia), (17)

Pi 1a) = !a)n (18)

with

Pr = P1 PI, (19)

4-. + .4 . . . ..-4. .-4"

i--gue -4- A spai d4-a it 4 "

4- -•. - - - -4-.-. . . .

Figure 2. A spaliaI domain within the TLM mesh
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PB = PBPD (20)

PH + P, = PD (21)

The inner domain projection operator projects the circuit space X on the inner ports of the
domain D (Figure 3). Since the projection operator P, and the connection operator [ are
commuting, i.e.

i1P, r = 0 (22)

we obtain

1b), = r 1a), (23)

Applying diakoptics to TLM structures requires the computation of the wave pulses scattered at
the domain boundaries. The initial conditions or boundary conditions are given by the wave pulses
incident on the boundary ports. We apply the projection operators Pt P0 and Pi, Pp in order to
separate the field states 1a) and 1b) into the inner field states 1a) and 1b), and the boundary states
Ja)B and Ib)R. From equation (14) we obtain

lb)a = T SUB ua)t, + T SH, !a),

lb)1 = T Sin a)H + T Sit 1a), (24)

with

SUB = PH S Pn

S81 = PrS P1

SIR = P, S PH (25)

Sit = P, S P,

Using equations (23) and (24). we eliminate the inner domain states 1a), and Nb), and obtain

Ib) = IT SUB + T Sat (I - r T S,,) -' I T SiI Ja)B (26)

This is the relation between the incident and scattered boundary state. It describes the evolution
of the boundary field state without knowledge of the inner-field state. It has to be considered that
the operator equation (26) is non-local with respect to both space and time. We expand the
operator (I-o T Sit)- into a Neumann series"-'" and obtain

Figure 3. The inner ponts of a TLM domain
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(1 - r T S,-) = " T'(r S,,)' (27)

Inserting this into equation (26) yields the boundary state evolution equation

lb)0 = GJa)B (28)

with the boundary field evolution operator G given by

G=[T Snn+ SBI( gTI2 (r S1)'r sin] (29)

The boundary field operator G gives the relation between the boundary state vector Ja)u rep-
resenting the wave pulses incident on the boundary and the boundary state vector 1b)B representing
the wave pulses reflected through the boundary. Equation (28) is the general formulation of the
boundary element problem in the Hilbert space. Since the Neumann series is an infinite geometrical
series in space- and time-shift operators, the boundary field operator is non-local with respect to
space and time.

4. THE DISCRETE TWO-DIMENSIONAL GREEN'S FUNCTION

As an example. we derive the discrete Green's function for the half-plane. The discrete Green's
function for the half-plane is given by the projection of the boundary state evolution operator
equation (28) onto configuration space for a point-like initial state 1a) 8 . The half-plane (Figure 4)
is defined by the domain projection operator Pr) given by

P,= I:.n>)(k:m.nl (30)

As in the shunt TLM-model, voltage wave amplitudes instead of total voltages are used. a new
Green's function for wave amplitudes has to be defined. For a boundary problem. the discrete
Green's function is defined by the convolution

r------------------------ i
I I I I I I

I ,

-- 4 -4 -4 -4- -4 -4- -4---

I--- -- 4 -4- - .-- 4 4 4

L- -- -4--4--4-- -4-9------4--- I

Ig4------4 4,4 ------

II I I I I I I I

Figure 4. The honiogeneous iwo-dimensional half-space
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lkb. = E k.,. . . ~

= ;G.a (31)

with

n E B (32)

where
B = (f.,nf .... fl,) (33)

denotes the set of N boundary nodes.
ia, is the column vector of the incident impulse functions at the time kAt. Ab,, is the column

vector of the scattered output wave pulses at the time kAt. ,G,, is the discrete Green's function
for an arbitrary boundary with N boundary nodes. It describes the relation between the incident
and the scattered wave amplitudes in the boundary ports.

For the half-plane. the boundary is given by mn=l and n-x....1- . .... x. Therefore equation
(31) yields

Ab,, AG, a.,, (34)

The boundary state evolution equation (28) may be expressed by the discrete Green*s function.
equation (34). via

Ch)n G !a), (35)

where the boundary field evolution operator is given by

1 0 0 ()
0 0 0 (.G = ,G,,_,,jk;0.n) (k';0.n'j (36)

G = 0 0) 0 0 ... . ...

In order to calculate the Green's function for the boundary of the half-plane. we start from an
impulsive excitation at n' =0, k'O given by

I
0 10;0,0) (37)

0
0

and obtain

I

jb)0 kG', k;On) (38)
0
0

Our result will be the Green's function AG,,.
Mapping equations (28) with (29) and (37), (35) with (36) and (37) to configuration space by

multiplying both equations from the left side with (k;0,nl, we obtain
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0(k;O.njb)a = (O~fnlS 1 r (F S.~)A-" F S11  00)(9

.0

where we have used
(kIT'IO) =6, (41)

so that only one term of the Neumann series in equation (29) contributes to 1,G,,, if we restrict
ourselves to k--2.

With this result, we consider equation (29) and formulate the main part of the problem that
means the operator (T I SI)' recursively

la)k. , = T r S11a),? (42)

where

a,

ia)k S' k:m.n) (43)

(14

With the projection operators P1 and PI, given hv

0 0 () (0

() 1 0 0 ! -An) (kP1 = •!:~•(~),
0 0 1 0 .,,

1 0 0 I

10 0 0

0 0 I () Ik:m.n)(k;.n.n (44)

o 0 t o

and

I 0 I) 0 I)

0 0 0 0

0P 00 Ik:O.n) (k:O.,ni (45)

0 0 0 0
0 0 0 0.n

000 0 0 o

ityild fr heopraor 000 ~u 0mad ,
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0000

S- 0 0 0 0 k;O,n) (kO,nI (47)
0 0 0 0

0 0 0 0

000

S= 0• k;O.> k;O.,, (48

Sn IkIm,n) Ik;m,n

+ 0 04 jkO~n) (k;OAnl (49)0 -1 A,,
0

We obtain

0 Oa.., S 00.0 =1 ( l0t 50)

0 11t:o.- 1>

and

[0

0(k:0.n T S. la), (k- 1:0.nla),-. 51)

Defining

(k;m.nla)k 
a,

a,

A a4 tnn

0 +
= 0 A[at,r.... + Ada_,]......

0 0

0 o0
0 0

+ +aiJ . + [a4I,... (52)

1 +
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and assigning k=k'-1. we obtain the following system of partial difference equations by mapping
equation (42) to configuration space

k+lat],,,+,. = 4 (kal,,.,, - [a 2 l,,,. , + Ja3,,,n + k[a4J],.) (53)

AjaI],.. = (-A[a,].,+I.. + k1[a2],.k,. + k[a 3],.,.. + kA[a4.,+ 1.) (54)

k.t[all].... I = W (all,,.. + k[a2],,,.,, + dla3lm.n -ka]a4,.) (55)

k Ial .... = (*[a,]... + k[a,],... - Aja3], + k[a4k,..) (56)

for

n = - .. - 1,0, 1 .... 3

m = 0, 1,2,....

The initial conditions are given by

()[aIh 1  ,,[a3i,.,= (57)

,)[a 4]0 .- - = . all other m.n: 0[a,,,, (1 (58)

As the space is not bounded with respect to n. we only need boundary conditions concerning m.
One boundary value is

aka., 0 (59)

As we have a system of second order concerning m. we need another boundary condition.
Therefore we apply the Sommerfeld radiation condition. 12

From equation (51). we obtain for the Green's funetion for k _- 0

k ,2GG 5 A[aa),, = i ([aj,., + [aJl,, + k[a4lO,.,) (60)

This system of partial difference equations can be solved by transforming it to frequency- and
momentum-space. Concerning n. we consider k[a,i ..,. as the Fourier coefficients of the function&[A i({),1:

£;{k[a,],,,.n} = A[A,({)I,,= A[aJ,,,.,, -" (61)

with

= exp 2,rjN (62)

Concerning m and k. we apply the Z-transformation'-

Z{k[A,(k)1,,} = [(kv),= ý k[A,()],, ( , A (63)
k =0

with

v = exp 21rjf (64)

and in analogy to equation (63) the Z-transformation with respect to m
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Y{IBi(t.•.)].} = [C1{k,T,v)j = ý [B,(•.V)J,,qq-l (65)
M.-0

with

"= expjk (66)

As we have

g{,[i] ... , }= ,I,(O,. '-'(67)

for a shift in the positive/negative direction of n and

Z {j, ,[Ar(,,)J} = v[B,(Q.v)J,_ - v ,,[A,(]. (68)

Y{[B,(k,v)j,,, = "qjC(Q.j,v)j - -q[B,Q(,v)j,, (69)

for a left-shift of k and m. we obtain

2VTqc - V = C, - G2 + C, + C, (70)

2 C, + [Bj(), = - C, + C, + C, ÷ C, (71)

2vtC, - v = C, + C, + C, - C. (72)

2'C 4- v= C, + C_,- C, + C, (73)

where we have used the abbreviation

[ojE, = [BI,, + [B1J(, + !B,4 , (74)

This system of algebraic equations has the solution

C, = T (2W - ý-qv3 -,qv- - 2-v-' - -n'tv 3-_Rv)

+Ný (tTIV2 -,9V - )k2V + •n) (75)

C2 =I ('-v 3 + -n2k2v - klv 3 - 2 TIj2 v2 
+ -qVt)

_ B10 (2k.9v-3 - -,)VI _l2V2 - I22t2 + kn) (76)
N

C3 = ; ( 2iqv4 - 2TvO - Tf2V
3 

-k•l2v2 - nqv
2 + - V)

- ([(2V2 - 2•, 2 -- . V + 2 2 ) (77)

1
C N (262Y10 - "llv - 2•r9p 3 

+ g'q2V2 - k2"qV2 + krTv)

- B 01o (B2O.J 2 _- q•2V kn9V + kq) (78)
N

with the nominator N given by

N = 2T2 (4V - -p3) + 29(AV4 - V3 - E2 v3 + v + k2v - 2k) + 2•v - 2kv3 (79)
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For the inverse transformation with respect to m. %e consider the function C, and rewrite equation
(78):

C - 2(1 1,,

~ (~ (80)

TV T li v 2 2E.

We assign

•q" -rI I - - I
cosh a= t,.

and

sinh cc cNcosh-e- I

I 2

with

JI for fila) 0 (83)
-2I for+ A fa )

It yields

- j cosh a (v -t [B,,],,) (I- E
T 

2 T cosh a-t= 20 (-))

+ sinh a T(. ov) (84)

=1 -- )- cosha+I

with the function T(k.v) given hy

2(1 - V~ +) I +

t V2 - I V + •0

The following correspondences are valid: 1 o

-nr cosh a
YcOsh am) h (86)

21 - . cosha +
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-ij sinh X(
S{sinh n} = 2_- -coshu-- (87)

with m=0.i.2.... •
Writing out the sinh(cm)- and cosh(mm)-function in exponential terms. we obtain for IB,1T,,

[B4, I = l2exp(+ m)w ) 2 . -I -, ..) - .. +

1/2 exp(-am) ((v+ - cT({.v)) (88)2(1 - V-1)

The Sommerfeld radiation condition means that for PR(a} 3, 0, the terms with exp(-ctm) and
for Fl~ct - 0, the terms with exp(+cwn) must vanish because in passive media, exponentially
growing solutions do not correspond to physical solutions. In both cases ue obtain

(v -T_1[3,,l) tI - si' ,j'
0 (1- (89)

and for [BtJ,

2v-(v-" ) ! v 1
S
- I ")-- cos --

2C= 2v cos I+

2V, - 2v 4 COS - t(9-)

V- 2;cost 1 (90)

for m=0,).2....x with

cos0t = cos2,rN - (91)

We only need the boundary value [B 1,(Ov)j] to calculate ýG,_. because wvith equation (60) it yields

k _2G, a,, = X (Z-' 1B(v)}) (92)

for k - 0. Of course, the result for IB&], is the same, if we consider the functions C1. C, or C,.
The transformation back to time-space.' can be achieved by

k[Aj(O)1, = 2 [B,0,v)J,,, /'- dv (93)

where C is a closed curve in the complex v-plane which surrounds the unity-circle. Integration
must be taken in anticlockwise sense.

Owing to the orthogonality relation

SdN =6,(94)

the inverse transformation from momentum space to configuration space concerning n is given by

XAi funAc()tio = 0iati.d.. w equ[A,(t)io , exp(j0n) do (95)

As Bo(Q,v) is an even function of 0, it yields with equations (93) and (95) for kfaoj,,]
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A[aolo., = 2 j Io(O.')Iicos nO v- do dv

- 2 2 (v•z - 2 s + 4- Cos os r
_ £" -cos Od d____

2 Irjc rJ v -- 2v cos P + I

S1 - 2 (96)

where we have used

.f (analytical function) dv = )

For the evaluation of the two integrals 1, and I.. we can restrict ourselves to the case n -- 0
because

[a ,, ,I,,. , (97)

With"
4

"cosnO dO YTV
,2 -- (98)

for v2 > 1. n •>0 and

ii v- di = 8,,,, (99)

we calculate

I2 = 1 A.,_- - . (100)

For the integral I,, we apply"5

1 = k p'P,(x) (101)

4I + 2px + p2 I•"

for jpj < I and I~j • 1 and",

I -2 I + 2, coskx (102)
1 - 2pcosx + p k'I

for [pi < 1.
With the integral representation of the Legendre polynomials"7

I -- t" dt = _IP,(x) forn 0(1

27rj f... vt -2x+ ,+or 1 0 o (103)

where C' is a closed curve in the complex v-plane which encircles the unity-circle in anticlockwise
sense, we obtain
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11 = k+,3
1 

- k-1,0

k+l
+ E 

4
A'-I-jin-2*2J- i k~I-,

1 ns + 4 *k'I-jn-2+,

+ +o
k

+ E i k-jn.,I--1 k-,ln-,-, + 4
k- 1

4
-.- , (104)

i-0

where the function ki, is defined by

A•1, = 7 " Pt(cos 2 012) Pk 1-(-sin 2 0/2) cos nO dO (105)

To calculate k',- we expand PI(cos2 0/2) and P,_j(-sin2 0/2) in terms of cos- 0/2 with the help
of References 18 and 19:

pt(-sin' 0/2) = (l)k ( + (-k-(cos 2' (106)
P, (cs"02)=I (co- 0/)"(o21 /2- (107)

1v2 1

We substitute 0 = 2 y, apply the integral,('

,,..2 n-rn for n •> mt

cos2n t cos 2mt dt = (108)
0 forn < m

and obtain for the function kin:

k 11/21 A-1 2-j )

k. = 2 S•S ) ()k-I .. )3÷3- (1=0 s'0 - -O,

r 2r ( 2)s + r -(1)

Combining the two integrals yields an algebraic expression for the discrete Green's function

kG. = I 6k,.1+ - i8k.._1 + i k+1L - 1 ,*-

k-I

+ I I k-,-1',.2-1 - k-,-jn*,, + k,-,-,,-)

k-2

+ 4 k-2-j1 n+I-j - 1 k-2-4-.-- + 4 k-2-jl,-- (110)

for n=0,1,2,...- and k-=2.3,4....-. Because of equation (97) we have for n _- 0:

G, kG, (111)

As already remarked, the general Green's function for an excitation at the time k' in the boundary
node n' is obtained by the transition

G, "-* k-k,G,,-' (1!2)

In Figure 5, kG, is depicted for n=-9, .... -1,0..... 9; k=1.2..... 10.
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.2

kG.
.0

-. 2

n k

Figure 5, V.ilucs of the Green's function

5.CONCLUSIONS

In this paper. the TLM-method has been represented in the Hilbert space. The Hilbert space
formulation allows the derivation of general algebraic expressions for the field evolution without
having regard to the individual geometric conditions. Geometrical structures may be described in
a general way by projection operators. A further advantage of the Hilbert space formulation is
that the powerful methods of functional analysis 2' can be applied. General investigations of
operator equations concerning the existence andI the convergence of the solutions are 'simplified.

The Hilbert space formulation was used for deriving general algebraic expressions for the space
and time discrete field evolution. From the local operator equations governing the time evolution
of the field state vector, the nan-local operator equation describing the time evolution of the
boundary state vector was derived.

First applications of this method were demonstrated in calculating the discrete Green's function
for the half-plane.

REFERENCES
L. P. B. Johns and R. L. Beurfe. 'Numerical solution of 2-diniensionai scattering probfems using a t ransmission- lie

matrix%. Proc. IEE. 118. 1203-1208 (1971).
2. W. 1. R. Hoefer, 'The transmission fine matrix method-theory and appfications', IEEE Trans- Milcrowave Theorv.

Tech., MTT.33. 882-893 (1985).
3. W, J. R. Hoefer. 'The transmission line matrix iTLM) method'. Chapter 8 in Numerical Techniques tor Microwave

and Millimeter Wave Passive Structures. I'. ttoh fEd.). John Wilev. New York. 1989. pp. 49(-SQL
4. K. E. Gustafson. P,7rtial Di 'fferential Equations and Hilbert Space Mfethods. John Wilev. New York. 1987.
5. R. F. Harrington. Field Computation by Moment Methods. Krieger. Malabar. FL. 1982ý.
6. P. A. M. Dirac, Quantum Mechanics. 4th edn. Oxford University Press. Oxford.
7. J. von Neumann. Mathemartsche Grundlagen der Quantenmechanik. Springer. Berlin. 1932.
8. R. E. Colin,. Field Theorv of Guided Waves. 2nd edn. IEEE Press. New York. 1991. pp~ 55-172-
9. W. J. R. Hoefer. T'he discrete time domain Green's function or Johin's matrix-a new powerful concept in transmission

line modelling'. International Journal of Numerical Modelling: Electronic N~etworks. Devices and Fields. 2. 215-225
(1989).

10. J. Weidmann. Lineare Operatoren in llilbertraumnen. B. G. Teuhoer. Stuttgart. 1976. pp. 96-11)5.
I1- H. Heuser. Funktionalanalvsuv. B. G. Teubner. Stuttgart. 1986. pp. 10)6-113,
12. J. A. Kong. Electromagnetic Wave Theory. John Wiley, New York. 1996. p. 383.
13. 1. N. Bronstein and K. A. Semendjajew. Taschenbuch der Mathematik. Verlag Harri Deut~sch. Thun. 1985. pp.

649-654.
14. 1. S. Gradshieyn and L. M. Rvzhik. Tables of Integrals. Series and Product. Academic Press. New York 1.980, 41th

edn. p. 366. No. 3.613.
15. J. Lense. Kugelfunktionen. Akademische Verlagsgeselischaft Geest & Portig K.-G.. Leipzig. 1950). pý 14.
16. 1. S. Gradshtevn and 1. M, Rvzhik. Tables of Integrals. Serics and Product. Academic Press. New York. 1980, 4th

edn, p. UI).
I7. M. Abramowitz and 1. Stegun. Handbook of Mazhemarc Functions. Dover Publicattons. Ncw York. 1970. 9th edn.

p. 784.
18, A. P. Prudnikov. Y. A.. Brychkow and 0. 1. Mariakev. Integrals and Series. Gordon & Breach. i-ondon. 1986. p.

625.
19. M. Abramowitz and 1. Stegun. Handbook of Marhemnattc Functions. Dover Publications. New York. 1970. 9th edn.

p. 775.
20. 1. S. Gradshteyn and 1. M, Ryzhik. Tables of Integrals, Series and Products. Academic Press. New York. 1980. 4th

edn, p. 374. nso. 17.
21. S. Grossmann. Funktionalanalvysis: im Hinblick auf ihre Anwvendungen in der Phs.uik. Akad. Verfags-Geseflsehaft.

1972. Vols I and 2.



HILBERT SPACE FORMULATION OF T•M 45

Authors' biographies:
"Peter Russer was born in Vienna. Austria. in 1943. He received the Dipl.-Ing. degree
in 1967 and the Dr. techn. degree in 1971, both from the Technische Universitat in
Vienna. From 1968 to 1971 he was an Assistant Professor at the Technische Universitat
in Vienna. In 1971 he joined the Research Institute of AEG-Telefunken in Ulm. where
he worked on fibre-optic communication, high-speed solid-state electronic circuits, laser
modulation and fibre-optic gyroscopes. Since 1981 he has held the chair of Hochfre-
quenztechnik at the Technische Universitat Muinchen. His current research interests are
methods for computer-aided design of microwave circuits, integrated microwave and
millimetre-wave circuits, microwave oscillators. microwave applications of superconduc-
tors and optical communications. Peter Russet is the author of more than 90 scientific
papers in these fields. He is an IEEE Senior Member, and member of the German

Tnformationstechnische Gesellschaft and the Austrian and German Physical Societies. In 1979 he received
the NTG award and in 1990 the Peter Johns Prize. From 1987 to 1989 he was the chairman of the German
MTT/AP Joint Chapter. In 1990 he was Visiting Professor at the University of Ottawa.

Michael Krumpholz was born in Bonn in 1966. He received the Dipl.-Ing. degree in
electrical engineering at the Technische Universitat Munchen in 1991. Since then, he
has been working as a Research Assistant at the Technische Universitat Munchen in
the field of numerical techniques for microwave circuits.



INTERNATIONAL JOURNAL OF NUMERICAL MODELUNG " ELECTRONIC NETWORKS, DEVICES AND FIELDS,

Vol. 6, 47-65 (1993)

SPATIALLY WEIGHTED NUMERICAL MODELS FOR THE
TWO-DIMENSIONAL WAVE EQUATION: FD ALGORITHM

AND SYNTHESIS OF THE EQUIVALENT TLM MODEL
N. R. S. SIMONS AND A. A. SEBAK
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SUMMARY
In this paper a new TLM model for the two-dimensional wave equation is introduced. It is synthesized
directly from a FD algorithm. The FD algorithm is second-order-accurate in both space and time. and is
explicitly time-stepped. The spatial derivatives in the FD algorithm are approximated by the weighted
combination of two standard central difference stencils, one oriented as usual. the other rotated by 450 with
its arms extended by a factor of (2)"2. The TLM model is realized as the weighted connection of two original
models (with the same geometrical configuration as the FD algonthm). The weighting in the TLM model is
accomplished by using a variable intrinsic impedance for specific elemental transmission lines. The FD and
TLM methods possess identical dispersion relations if the former is operated at its upper limit of stability.
Therefore, under these conditions both represent identical models for the simulation of wave propagation.
The propagation characteristics of the new model are investigated and the conditions for approximate
numerical isotropy are provided. The numerical implementation (scattering matrix and transfer event) is
described. To validate the new model, the calculation of cutoff frequencies of various modes in rectangular
waveguide is performed. Comparison with analytical results (for an unfilled waveguide) and other numerical
results (for a waveguide partially filled with a dielectric) validate the implementation of the model.

I. INTRODUCTION

The numerical techniques discussed in this paper are capable of solving arbitrary two-dimensional
electromagnetic field problems. If problems independent of the z-direction are considered.
Maxwell's equations are reduced to two independent sets. one of which is given by,

aE : aH ,,( a
ax at

aEH , aH, (lb)

-_ oH,= orE. + c aE (lc)ax Oy at

where E, and HP, are the electric and magnetic fields, respectively (with p = x, y, or z) and c,
A., and r are the permittivity, permeability and conductivity of the medium of interest, respectively.
Equations 1 can be combined to yield the two-dimensional wave equation in E.,

a2 E + E. aE. -a2E.
+E + . +2 (2)

The numerical techniques presented in this paper are developed from discrete approximations to
(2) rather than (1).

Johns and Beurle introduced the transmission-line matrix (TLM) method in 1971 as a technique
which utilizes the equivalence of voltages and currents on transmission lines to electric and
magnetic fields in space.' An orthogonal grid of transmission lines represents a physical model

0894-3370/93/010047-19$14.50 Received F November 1991
@ 1993 by John Wiley & Sons, Ltd. Revised 24 March 1992
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which approximates (1) or (2). Hoeter-,3 presented recent applications and extensions of the
method. Another numerical technique used extensively in the computational electromagnetics
community is the finite-difference time-domain (FD-TD) method introduced by Yee' and
extended by others.5 Both the TLM and FD-TD methods are capable of providing approximate
solutions to the time-dependent form of Maxwell's equations. In their most basic forms, both
utilize regular rectangular grid structures and explicit time-stepping. Under certain circumstances
both methods represent identical models for wave propagation. For all cases in which an equival-
ence between a TLM model and FD algorithm has been established, the TLM model corresponds
to the FD algorithm when the latter is operated at a specific location in its stability range.'"

Recently.' the equivalence of the original TLM model' and the two-dimensional Yee algorithm'
is established. In Reference 7 the equivalence of the three-dimensional expanded node' and the
three-dimensional Yee algorithm' is established. In Reference 8. models of (2) based on hexagonal
(rather than rectangular) computational grids are investigated, a TLM model is presented and its
equivalent FD algorithm derived.

In general. the finite difference (FD) method can be applied in various V a, s to approximate
(2). Grid structures and the accuracy of the difference formulas can be varied, and different time-
stepping schemes can be used. The purpose of this paper is to synthesize an equivalent TLM
model directly from a FD approximation of (2). The general approach can be extended to the
synthesis of other TLM models from FD algorithms.

In the following section. the FD algorithm is presented ýs a weighted connection of two Yee
algorithms,' one oriented as usual (arms of the spatial stencil oriented along the x-% axis). the
other rotated by 45' with its arms extended by a factor of (2)' . The dispersive characteristics
and stability criterion of the algorithm are derived. In section 3. the equivalent TLM model is
presented. Based on the relationship established in Reference b. the equivalent TLM model is
constructed from an interconnection of two original models. One oriented as usual (elemental
transmission lines oriented along the x-v axis). the other rotated by 450 with its arms extended
by a factor of (2)"'. The weighting is accomplished through the use of a variable intrinsic
impedance for specific elemental transmission lines, and synchronism is maintained by increasing
the phase velocity along the diagonal elemental transmission lines. The relationship between the
FD algorithm and TLM model is established through the equivalence of propagation characteristics.
the most fundamental method for establishing the relationship between a TLM model and another
numerical method. The TLM model and FD algorithms represent identical methods for the
numerical simulation of wave propagation if the latter is operated at the upper limit of its stability
range. In section 4. the propagation characteristics of the models are investigated. For the
appropriate selection of the weighting factor, the propagation characteristics become approximately
isotropic (i.e.. the directional dependence of the numerical propagation velocity is removed). This
allows the model to be used in conjunction with the velocity error correction technique described
in Reference 8. In section 5. the numerical implementation of the new model is described. The
scattering and transfer events are presented. The traditional application of calculating cutoff
frequencies in rectangular waveguide is used to validate the model. Conclusions and a discussion
of the new TLM model are contained in section 6.

2. FINITE DIFFERENCE ALGORITHM

Consider the following semi-discretization of (2),

E,(x+Al.v) - 2E.(x.y) + E.(x-.l.y)
,112

E,(x,y+AI) - 2E,(x,y) + E,(x,v-AI) d-E)Ai" fixOt2(3)

where the spatial derivatives are replaced with second-order-accurate central difference approxi-
mations, we assume a = 0, and the right-hand side of the expression is evaluated at the spatial
location (x.y). The stencil for this spatial discretization is shown in Figure 1. We assume a uniform
grid spacing of Al in the x- and v-directions.

FD approximations to the wave equation introduce numerical anisotropy and dispersion (i.e..
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44
+1

+1 +1 A

T +IT -

Figure I. Sccond-order-accurate. central difference stencil used to approximate the spaliai derivatives mi the two-dimen-
sional wave equation

the dependence of the numerical propagation velocity on the direction (if propagation and fre-
quency content of the signal). To reduce the numerical anisotropy present in the semi-discretization
(3), Vichnevetsky and Bowles"' proposed the weighted combination of two finite difference
approximations to the spatial derivatives in (2). as illustrated in Figure 2. This semi-discretization
can be expressed mathematically as,

JEz(x+Al.v) - 2Ex,y) + E,(x-.1ls)

+ E,(x.vy+AI) - 2 E.(x.y) + E.(x.v-A)

+ E,(xj1.y+AI) - 2E(x,Y) +Ejx-Al.v.-Al)
+ k E.• -;-+- -- -}E.(, "E:, a . - )

I( N, 2A1 )-

E,(x+A1.y-A1) - 2E.(x,v) + E.(x-A1,v+-l)}
(2AlP2

a2E.
= .2 

(4)

( 1-k ) + k --

At

Figure 2. Weighted combination of two S-point stencils
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where k is a weighting factor restricted between zero and one (and again the right-hand side of
(4) is evaluated at the spatial location (x.y)). This scheme uses the same grid as the semi-
discretization (3) and has the same memory storage requirements.

With the appropriate selection of k. the propagation characteristics of (4) become isotropic i.e.,
the propagation velocity becomes independent of the direction of propagation. In this paper we
investigate time-dependent rather than time-harmonic solutions of (2). Therefore approximation
of the temporal derivative in (4) is required. Using a second-order-accurate central difference
approximation. (4) becomes,

(k E.(x+Al.y) - 2E,(x,v) + E:(x-AI.y)(1-k) 1 Al2

E.(x. +Al) - 2E.(x.v) + E.(x,y-Al)

E.(x+A1.v+AI) - 2E.(x.v) + E,(x-AIsv-Al)
( \ 2AI )2+ k

SE.(x±-AI.v-A() - 2E=x•!)+E(x-M.Y*-M)

E.Af(.rv) - 2E.(x.y) + E, I(.r-). . .......t-.......(5)

where At denotes the time step, and the left-hand side of (5) is evaluated at time 1. (5) represents
an explicitly time-stepped finite difference algorithm for the solution of (2). We classify this
algorithm as an explicitly-time-stepped, second-order-accurate in time, and geometrically weighted
second-order-accurate in space. FD algorithm. Trefethen'" has investigated this algorithm and
determined the conditions for approximate numerical isotropy.

The dispersion relation for a numerical method yields the relationship between the dispersed
(or numerical) and mathematically exact quantities. We use the notation of Vichnevetsky and
Bowles."' where dispersed quantities are denoted bv a(*) superscript and physical (exact) quantit-
ies are otherwise unscripted. In the following section. the dispersive analysis of the equivalent
TLM model is outlined. It is necessary to distinguish the quantities associated with the elemental
transmission lines of the model from both the numerical and physical quantities. We use an (I)
subscript to denote elemental transmission line quantities. A monochromatic numerical plane
wave propagating through the numerical mesh at an angle 4) to the x axis can be expressed as.

E, = E,,e,-" i+ '0( ..... - - "" ) (6)

where 13* represents the numerical phase constant. Frequency is regarded as an absolute quantity
defined in terms of numerical or exact quantities,

c* _c13* c cP3
fX 2=X -=2= - (7)

where c* and )* are the numerical propagation velocity and wavelength, respectively: c, X, and
13 are the exact propagation velocity, wavelength and phase constant, respectively (c = (c;.)-1).
Substitution of (6) into (5) yields the dispersion relation for the finite difference algorithm.

kIsin-3"A(cos + sin ) in 13*A(cos 4b - sin 6)}

S({sin 2.__ + sin2 .

s - cs b ..sin.. - (8)
( { 00 si --namenta +a. I n- asi

Expression (8) describes the fundamental manner in which plane waves propagate through an
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infinite FD grid. Given a spatial and tempolial discretization (Al and At respectively), frequency
of excitation (w), direction of propagation (4). and the weighting factor (k), the numerical phase
constant (13*) can be obtained from (8). This value can be compared to the exact physical phase
constant to determine the amount of dispersion introduced by the algorithm. Therefore. (8) is a
fundamental representation of the fidelity of the algorithm as a method for the simulation of wave
propagation.

The stability criterion for this algorithm (obtained using the Von Neumann method, discussed
in Reference 12) is given by,

At _ (9)
,2-k c

3. TRANSMISSION-LINE MATRIX MODEL

3.1. Synthesis

We now synthesize a TLM model equivalent to the FD algorithm presented in the previous
section. The FD algorithm is constructed from the weighted combination of two second-order-
accurate central difference stencils, one oriented as usual (arms of the stencil located along the x
and y axis), the other rotated by 45' with its arms extended by a factor of (2)1-. It has been
demonstrated that the original TLM model' and the FD algorithm (3) (,ith temp:ral derivatives
approximated by a second-order-accurate central difference approximation) are e •uivalent. 6 There-
fore, the new TLM model should consist of the weighted combination of two original models.
One oriented as usual (with elemental transmission lines oriented along the x and y axis), the
other rotated by 45' with its arms extended by a factor of (2)"2. The basic geometry of the model
is shown in Figure 3. The new model is realized as a shunt connection of transmission lines (as in
Reference 1). A mesh of nodes is provided in Figure 4. Note that a direct electrical connection
between diagonal and axial transmission lines exists only at the centres of nodes, located at even
multiples of Al in both the x- and y-directions (denoted by the black dots in the figure). To

Al Al

Al +l l
Al

Tebo

Figure 3. Basic geometry, of the new TLM model. created from the combination of two original models
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<XX.XX>
<XXXX> AL

U 
\x

Figure 4. Mesh of new nodes. Electrical connections in the mesh are denoted by black dots. These spatial locations are
the centres of nodes

complete the model, the electrical characteristics of the elemental transmission lines must be
determined.

The electrical circuit analogue of a weighting factor is a variable impedance. To implement the
ability to weight the two interconnected original models, the diagonal and axial elemental trans-
mission lines are permitted to have different characteristic impedances. The intrinsic impedance
of the axial elemental transmission lines (i.e., associated with the original model with elemental
transmission lines along the x and y axis) is Z,. and the intrinsic impedance of the diagonal
transmission lines (i.e., associated with the original model rotated by 450) is mZj, where m is the
impedance weighting factor (0 - m < infinity).

In the evaluation of the FD algorithm (5), communi;,ation of information between spatial
locations in the axial direction takes place at the same speed as communication of information
between spatial locations in the diagonal direction. Therefore, propagation along diagonal elemen-
tal transmission lines should be (2 )i12 times faster than propagation along the axial elemental
transmission lines, or

v1 = \2 tv (10)

where vi" refers to the propagation velocity along the nth elemental transmission-line. j 5-8,
and i = 1-4. A beneficial consequence of (10) is that the synchronism of voltage pulses is
preserved in the new model. The electrical and geometrical description of the new model is
complete.

3.2. Propagation analysis

The topology of the model is provided in Figure 5. To model a medium of arbitrary permittivity,
an open circuit stub is added to the centre of a TLM node. The new model is the weighted
combination of two original shunt nodes. Therefore, to maintain consistency, two open circuit
stubs are added. One of length Al12 and admittance Y0 /Z, (associated with the shunt node with
elemental transmission lines along the x and y axis), the other length AI/(2 t12 ) and admittance
YolmZ, (associated with the rotated shunt node).

The propagation analysis of the model proceeds in the same manner as performed in References
6, 8 and 13. Superposition and transmission-line theory yield the characteristic equation which
describes the behaviour of voltages on the model,

(. 2 13\1 4 8
2(m+l) 2cos 041 - ,n- = m M V, + • (11)

2~ 21 E
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3 7 for 1=1-4

oZto for:=5-9

Z'Yo for ,=9

T i1Y-- tori=1(.

24 ('a for 15-4

10

CtU for i=9

At
V2I for 1=10

Figure 5. Complete electrical and geometric description of the new model with permittivity stubs

A monochromatic numerical plane voltage wave propagating through the numerical mesh at an
angle (b to the x axis can be expressed as.

V_ = Ve . 0', . . (12)

where the parameters in the exponential term of (12) are as defined in section 2. Substitution of
(12) into (11) yields the dispersion relation for the TLM model.

sin2 W .Al (cos4) + sin(b) + 3*Al(cos 6- sin 4b)st -+ sin- .. . . . . . . .
22

+ smin-n2- (4+ Y,,) sinz i -- (13)

Expression (13) describes the fundamental manner in which plane waves propagate through an
infinite TLM mesh. Given a spatial discretization (AW). frequency of excitation (described through
BI), direction of propagation (4b), and the electrical properties of the model (m and Yo'). the
numerical phase constant (P*) can be obtained from (13). This value can be compared to the
exact physical phase constant to determine the amount of dispersion introduced by the model.
Therefore, (13) is a fundamental representation of the fidelity of the model as a method for the
simulation of wave propagation.

3.3. Equivalence of the TLM model and FD algorithm

We now establish the equivalence of the TLM and FD methods and demonstrate that both can
represent identical models for wave propagation. This is accomplished by determining the con-
ditions for which (8) and (13) are equivalent.

The term 0PAl in the right-hand side of (13) can be re-expressed as wAt by noting the following
relationships,

2irrS. ....
(14a)

= -7v (14b)
ca.)

Al
v= (14c)

(14b) is a direct extension of (7), (i.e.. frequency is considered as an absolute quantity and can
be defined in terms of exact, numerical, or elemental transmission-line quantities). If we divide
the FD dispersion relation (8) by k/2 we obtain,
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sin2 P*AI(cos + sin4o) + sin' *MAl(cos 4c - sin o,)

2 2
2(-k 2 C s n -3A[isin (b} 2A,1 WrAr

sin *A + sin' P -_sin- -- (15)k 2 1kc2At2 si-2

(15) and (13) have fundamentally the same form. Equating coefficients of the left-hand side of
(8) and (13) yields the relationship between the TLM and FD weighting factors,

2(1-k)
m = k (16a)

or

k = - (16b)

Equating the coefficients on the right-hand side of (15) and (13) yields.

2 Al

\k(m+ I) (4+ Y,,) At

substitution of (16a) into (17a) yields.

2 AlC = 2 - (17b)
ý (2 -k) (4+ YO, At

or if we desire c in terms of TLM model parameters alone, substitution of (16a) and (14c) into
(17b) yields.

c 2(m+2) (17c)S + 1)(4+ Y,,)

If the FD algorithm is operated such that (17b) is satisfied, the dispersion relations for both are
identical, and therefore the two methods fundamentally represent identical methods for the
simulation of wave propagation.

It is interesting to note that for the condition Y, = 0 (a 'free space' TLM model), the condition
(17b) corresponds to the upper limit of the FD stability range. As was found for the original node
and the Yee algorithm. 6 the TLM model and FD algorithm are identical when the latter is operated
at the upper limit of its stability range. This was not the case for the hexagonal TLM and FD
methods."

If we return to the context of modelling electromagnetic phenomena. we can establish the
relationship between the admittance of the open circuit stub and the material properties of the
medium modelled by the entire model. The physical propagation velocity is defined as.

C = , 1 (18)
\ CA)otrli)

where c, and ýLr are the relative permittivity permeability, respectively and c,) and p.) are the free
space permittivity and permeability, respectively. Relating this to the propagation velocity in the
TLM model (given by (17c)), we obtain,

1____ 2(m+2) Al

Im (4 + Yt) At (19 c

If we consider the case Yo) = 0 to represent free space, i.e., c, lr 1, (19) becomes,
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1 (m+2) A12

eogfo 2(m+1) At' (20)

The relative permittivity and relative permeability are related to the stub admittance Y0 by,

IrJ. + yoŽ (21)

4. PROPAGATION CHARACTERISTICS

Numerical models for wave propagation represent a discretized medium that is both dispersive
and anisotropic, i.e., the propagation velocity of waves in the numerical mesh depends on both
the frequency content of a signal and the direction of propagation. This undesired effect is referred
to as velocity error and is determined from the dispersion relation for the particular model. The
ratio c*lc (the ratio of the numerical propagation velocity to the physical propagation velocity),
can be used as a quantitative measure of velocity error. The TLM dispersion rela ion (13) can be
rewritten as.

All
sin2 lr(cos 6 + sin ,) X.. + sinz rr(cos 6 - sin (b)

+ m sin'Tcos )- +sin2-1r cos4)./}

S2+ (4+Y,))sinn2,tr I 2(m+2) ( (22)2 V/(m+1) (Yo+4) A

Given the free space discretization ratio (AIA). direction of propagation (db). and the electrical
properties of the model (m and Y,), (22) can be searched to determine the dispersed discretization
ratio (AI/X*). Given Al/A and Al/\*. the ratio c*/c can be determined from.

c* Al/A
c A(23)

In Figure 6(a), (b), (c), (d), (e), and (f), c*/c is provided as a function of (b for fn = 90. 6. 4.
3, 2 and 0.01, respectively. For each case, contours for Al/A = 0.10. 0.20. 0.30, and 0.35 are
provided (Y(, = 0 for all cases). Note that in light of the equivalence established in section 3.3.
Figure 6(a), (b), (c), (d), (e) and (f) are applicable to the FD algorithm provided the FD
algorithm is operated at its upper limit of stability. c, = -I =1 and k = 0.002217. 0.25, 0-333.
0-4, 0.5, and 0.995, respectively.

In the limit as m approaches infinity, the new model is equivalent to a mesh of original nodes'
with elemental transmission lines oriented along the x and y axis. In Figure 7, c*ic is provided as
a function of 4) for the original model' (for Y, = 0). As expected the contours of Figure 7 and
Figure 6(a) are indistinguishable. In the limit as m approaches zero. the new model is equivalent
to the original model rotated by 450 and mesh spacing extended by a factor of (2)' 2. In Figure
8, c*/c is provided as a function of 6) for the original model rotated by 450 and mesh spacing
extended by a factor (2)1/2 (for YK, = 0). As expected the contours of Figure 8 and Figure 6(f)
are indistinguishable.

For moderate values of m, directions for propagation with no dispersion do not exist with the
new model. From the results of Figure 7, we note that no numerical dispersion exists for waves
which propagate diagonally through the mesh (4) = 450 + n900 , n = 0. 1. 2. 3). Numerical
dispersion is maximum for axial propagation (6 = n90°, n=0. 1. 2., 3). For the rotated original
model, the complementary situation is present. No numerical dispersion exists for (4) = P190. n
= 0, 1, 2, 3), and numerical dispersion is maximum for (oo = 450 + n900 , n = 0. 1. 2. 3). From
Figure 6(b)-(e) we note that the new model blends the propagation characteristics of the original
and rotated original models. Therefore. propagation along the directions for maximum numerical
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Figure 6. Contours of c/c for the new TLM model (Y,, 0) for (a) m = 900, (b) m = 6. (c) m = 4. (d) m 3. (e)
m = 2 and (f) m = 0 01

dispersion is improved, but directions for perfect propagation are eliminated. Therefore. in this
context the propagation characteristics of the original model are superior to those of the new
model.

However, from Figure 6 it can be noted that for the appropriate selection of the weighting
factor, the new model can possess propagation characteristics with approximate isotropy. The
appropriate conditions have been investigated in the context of the equivalent FD algorithm.'"'
The appropriate weighting factor for the semi-discretization (4) is k = 0.5 (see Reference 10).
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For the full discretization (5), Trefethen"' has determined a weighting factor of k =1/3 provides
isotropy to order (Al)4 (note that the difference in/k for the semi-discretization and ful discretiz-ation is a result of effect of temporal discretization in the later). Therefore, isotropy to order(Al)" should be obtained from the new TLM model for m -- 4.0 (using (16a) to convert k to m),
as shown in Figure 6(c).

Obtaining approximate numerical isotropy is equivalent to reducing the dependence of thepropagation velocity on the direction of propagation. Consider the simulation of a homogeneousproblem that employs a regular mesh. If the numerical propagation velocity is independent of the
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Figure 8. Contours of c* c for the original TLM model rotated bv 45' and mesh spacing extended by a factor J2)1"2_
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direction of propagation, the amount of velocity error at a given frequency can be accurately
estimated from the dispersion relation. Therefore, after-the simulation is complete. the velocity
error can be corrected at each output frequency. This method was used in Reference 8 (with the
hexagonal two-dimensional TLM model) to correct for the cutoff frequencies in a rectangular
waveguide with no a priori assumption regarding the directional dependence of a particular mode.
In this context the propagation characteristics of the new model can be considered as superior to
those of the original model.'

In Figure 9, the propagation characteristics of the new model and the hexagonal TLM model'
are compared, The ratio c*/c is provided as a function of the physical discretization ratio (AUXh)
for propagation directions o, = 0', 22.5'. 39°, and 45' for (a) the new model with m = 3.0, (b)
the new model with m = 4-0 and (c) the hexagonal TLM model. The results contained in the
figure indicate that the hexagonal model is superior to the new model in terms of both the cutoff
frequency of the model, and the degree of approximate isotropy. Therefore. in the context of
isotropic models for the simulation of wave propagation, the hexagonal model is preferred.

An advantage of the new node is that it is realized on a regular grid with equal spacing in the
x- and y-directions (41), The hexagonal model is also realized using a mesh with equal inter-nodal
spacing. However, owing to the nature of the hexagonal grid. the spacing in the x- and y-directions
is unequal, A/ and (3 )11211/2, respectively. This creates a disadvantage for the hexagonal model
in the modelling of structures with regular geometric features.
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5. NUMERICAL IMPLEMENTATION AND RESULTS

5.1. Scattering matrix

In the previous sections we have examined some of the theoretical aspects of the new TLM
model, We now describe the numerical implementation of the model in terms of the traditional
scattering and transfer events.2'3 TLM algorithms operate by simulating the progression of voltage
pulses as they are scattered throughout the mesh of transmission lines. Applying the appropriate
initial conditions and reflection coefficients (to model boundary conditions) the transmission-line
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simulation becomes analogous to an electromagnetic field problem. The implementation of the
new model follows the same procedure as all other models, i.e.. scattering of incident impulses
at the junction of nodes and transfer of the reflected pulses to adjacent nodes. The algorithm can
be expressed formally as,

kV = SkV' (24)

and

k.',V = CkV' (25)

where kVi and kV" are the vectors of the incident and reflected voltage pulses at all nodes at time-
step k. S is the global scattering matrix describing the interaction of pulses at all nodes in the
mesh, and C is the connection matrix describing how nodes are connected (and includes the
boundary conditions for the particular problem). These two equations include all information
required to perform the simulation.

The nodal scattering matrix can be assembled by examining the reflection and transmission
coefficients of a voltage pulse on each of the ten elemental transmission lines of the model. A
voltage pulse on the ith elemental transmission line -sees' a reflection coefficient of.

Z, - Z;
S ... (26)Z,. + Z;

where ZL is the parallel combination of all but the ith elemental transmission line and Z" is the
intrinsic impedance of the ith elemental transmission line. The intrinsic impedance of the elemental
transmission lines tfrom section 3.1 and shown in Figure 5). is.

Z, for i = 1-4

anZ, for i = 5-8
Zori-9 (27)

Z,/Y,, for i = 9
mZ,/Y,ý for i = 10

The associated transmission coefficient is.

T= I F (28)

From (26)-(28), the nodal scattering matrix can be assembled as.

v 1, a b b b d d d. d f h V,

V2 b a b b d d d d f h v,

v3 b b a b d d d d f h v3

V4 b b b a d d d d f h v4

vI b b b b c d d d f h v5

v6 b b b b d c d d f h v,.

V7 b b b b d d c d f h v7

v8 b b b b d d d c f h vJ

v9 b b b b d d d d e h v9•

Viol b b b b d d d d f g .v1 ,

where

- 2m - 4 - Y+(m+ 1)
a = --- -... ..... . . ... . ..4 + 4m + Y,,(m+l1)
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b2m
4 + 4m + Y,,(m+1)

C- 2 - 4m - Yo(m+ 1)

4 + 4m + Y2(m+1)

d 2
4 + 4m + Y,,(m +1)

- 4 - 4m - Y,)(1-m)
4 + 4m + YO(m+1)

2m Y,
f= 4 + 4m + Y4 1(m+1)

- 4 - 4m - Y(,(m- 1 )
g= 4+4m+Y,,(m+l)

h= Y,,
4 + 4m + Y,(mr+ 1)

The nodal transfer event is described by,

v1 (i.j) = vS (ij- 1)

v• (i4) = v, (i,j+ 1)

vi (ij) = v; (i+ Ij)

V45 0J) = V7(i- I -i1) (30)

v, (i0j) = v• (i- 14+ 1)

v7i (i~j) = v; (ij+ )i+ 1)

v (i04) = v; (i 4 )

v10 (iJ) = V10 (i~i)

where (ij) denotes the discrete (x.y) location of a node in the mesh.
If the TLM method is considered as a differential-equation-based numerical method for solving

(2), (29) and (30) represent the approximate model for wave propagation (in the same way the
FD method is considered as a differential-equation-based numerical method for solving (2) and
(5) represents the approximate model for wave propagation). The solution of a specific problem
requires the application of initial and boundary conditions. The treatment of boundary conditions
is an important subject for the practical application of the method. In this paper we are primarily
concerned with the development of the new TLM model as an approximate model fot ",ave
propagation and establishing the equivalence with the FD algorithm. Therefore we do not treat
the subject of boundary conditions in detail. The traditional methods of specifying reflection
coefficients at locations half-way between the centres of nodes (in both the axial and diagonal
direction) should be applicable. 2"3 Potential users should be cautioned that the intrinsic impedance
of the elemental transmission lines is not always the same for this model and care should be taken
in the evaluation of the appropriate reflection coefficients for a specific boundary condition. The
method described by Chen et al."4 of enforcing boundary conditions at the centre of nodes should
also be applicable to the new model.

5.2. Calculation of cutoff frequencies

To validate the new TLM model, we investigate the traditional TLM application of the calcu-
lation of cutoff frequencies of various modes in a waveguide.2+3 The cross-section of the partially
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20m

S.05m

Figure 10. The geometry of the waveguide cross-section analysed using the new TLM mooel

Table 1. Cutoff frequencies (in GHz) for rectangular waveguide

Mode New TLM model Analytical" % difference

(1,1) 1,244 1.2490 0.4
(1,2) 1.784 1.8015 0-9
(2,1) 2,126 2.1345 0-4
(1.3) 2.429 2-4605 1.3
(2.2) 2-481 2-4983 0.7

Table 11. Cutoff frequency (in GHz) of the dominant mode in par-

tially filled waveguide

E, New TLM model Finite element" % difference

2.5 1.054 1-063 0.8
5.0 0.846 0.852 0-7

10.0 0-614 0.623 1-4

filled rectangular waveguide and the physical dimensions are provided in Figure 10. The walls of
the guide are considered to be perfectly conducting. To realize this boundary condition. reflection
coefficients of magnitude -1.0 are placed at locations half-way between nodes. A mesh spacing
of Al = 0.01 metres is selected, resulting in a total TLM mesh with 20 nodes in the x-direction
and 15 nodes in the y-direction. Calculations were performed such that the true physical cutoff
frequencies are obtained directly from the simulation. Normalization for a non-free space medium
is not required.

The TLM simulation yields the cutoff frequencies of TM modes. Table I contains the cutoff
frequencies for the first five modes for c, = 1.0 (Yo = 0). A total of 1000 iterations (i.e.. 1000At,
where At can be obtained from (17c)) and a weighting factor of m = 6 was used. The TLM results
are compared to analytical results.' 5 The percentage difference is provided in the table. Reasonable
accuracy is obtained. In Table II. the cutoff frequency of the dominant mode is provided for c,
= 2.5, 5 and 10. As a comparison results generated by a finite element code are provided 16

Again, reasonable agreement is obtained.

6. CONCLUSIONS

In this paper we have presented a new TLM model for the simulation of the two-dimensional
wave equation. The TLM model was synthesized directly from an FD algorithmt"-" as a shunt
connection of two-wire transmission lines. The new model is a spatially weighted connection of
two original models.' One oriented as usual, the other rotated by 45°. The weighting is
accomplished through the use of a variable intrinsic impedance for specific elemental transmission
lines. Synchronism is maintained by increasing the propagation velocity along diagonal elemental
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transmission lines. In general, the synthesis of other TLM models from FD algorithms is possible
using the same basic steps.

The relationship between the FD algorithm and TLM model is established through the equival-
ence of propagation characteristics. We feel this is the most fundamental method for establishing
the relationship between a TLM model and another numerical method. It is possible to demonstrate
that the TLM model satisfies the FD algorithm (by examining the scattering and transfer of voltage
pulses at a node and its neighbours). In Reference 17. the original TLM model was shown to
satisfy the two-dimensional Yee algorithm. To demonstrate the equivalence, the definitions for
magnetic field quantities in terms of voltage pulses were altered. Rather than define the magnetic
field components at the centres of nodes at each iteration. the magnetic fields were defined at the
intersection of nodes at half iterations. Chen et al." have recently reported a complete algorithmic
equivalence of two- and three-dimensional TLM models and FD algorithms. We regard the
calculation of field values from voltage pulses to be a post-processing task associated with the TLM
method. The basic algorithm (scattering and transfer of voltage pulses) operates independently of
these definitions. One of the often-quoted advantages of the TLM approach is the ability to define
field components at various spatial and temporal locations (as long as a certain consistency is
maintained). Therefore, we feel that establishing an equivalence between a TLM model and
another numerical method without specific definitions for field quantities in the TLM model.
is the most fundamental and rigorous. We accomplish this by demonstrating the propagation
characteristics of the TLM model and FD algorithm are identical if the latter is operated at the
upper limit of its stability range.

The propagation characteristics of the new model have been examined. For moderate values of
m. directions for propagation with no dispersion do not exist for the new model. Therefore. in
this context the propagation characteristics of the original model are superior to those of the new
model. However, an advantage of the new model is that for appropriate values of m. approximate
numerical isotropy is obtained. This allows the model to be combined with an error-correction
method to remove the contribution of velocity error from the results.' Comparison of the character-
istics of the new model to those of the hexagonal TLM model' indicate the hexagonal model is
preferred (in terms of both the amour.t of approximate numerical isotropy and cutoff frequency).
This conclusion is supported by analogous finite element (FE) studies. Consider the relationship
of the various FD algorithms and TLM models (References 6 and 8. and section 3 of this paper),
and the relationship of the FD and FE methods. 19."' Based on these relationships, the original
TLM model' is analogous to using square quadrilateral finite elements of sides ,'l; the hexagonal
TLM model' is analogous to using equilateral triangular finite elements, each triangle having sides
of al and angles of 60; and the new TLM model is in some way analogous to using right triangular
finite elements, each triangle having sides of Al. .l. (2)' 2A1 and angles 90'. 450, 45'. Mullen and
Belytschko have determined that modelling with equilateral triangles (analogous to the hexagonal
TLM model) is the optimum triangular discretization if isotropy is desired. 2'1 This supports the
analysis performed in this paper.

Finally, the scattering and transfer events for the new model were presented and were applied
to the analysis of a rectangular waveguide partially filled with a dielectric. The cutoff frequencies
calculated using the new TLM model agreed well with both analytic and numerical finite element
results.

In 1976, Johns presented an interesting paper in which the original TLM model is described as
a discrete form of Huygens' Principle.`- Hoefer has continued this view and has provided a brief
historical review and description of the discretization process. 3 The hexagonal model can be
considered as a logical extension of the original model. The improvement in numerical isotropy
over the original model is intuitively obvious. The model presented in this paper could also be
described as a discrete form of Huygens' Principle. However, the model would have been
developed with a specific value for the weighting factor (presumably such that energy would be
scattered isotropically). While selecting a variable weighting factor may be of more theoretical
interest than practical value, the motivation for allowing this flexibility may not be obvious from
the perspective of a discrete form of Huygens' Principle.

The original model,' the hexagonal model' and the new model presented in this paper are
equivalent to FD algorithms that approximate spatial derivatives with second-order-accurate central
.."ference formulas. The difference between the various models is the geometric configuration
and weighting of the difference approximations. Future work will investigate the synthesis of a
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TLM model equivalent to an FD algorithm that approximates the spatial derivatives in the wave
equation with fourth-order-accurate central difference formulas.
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SUMMARY
The state and output equations of the overall networks are derived from the state and output equations of
individual multiports and knowledge of the interconnections between them. A generalized lumped-distributed
L/D multiport is described by its associated state, output and non-linear equations in the time domain. Any
network can be considered as composed of a set of multiports and independent sources. These equations
have been incorporated into a computer-aided procedure for the analysis of L/D networks. The procedure
can be used for the simulation of any non-linear microwave circuit and offers the facility of developing a
multiport equivalent circuit for any linear or non-linear device or subcircuit. Several examples are successfully
analysed using the developed general program.

1. INTRODUCTION

The analysis of non-linear dynamic networks by using state-space approach has been established
since the 1960s and well documented in many reference books. 5,6 Computer-aided state-space
analysis of lumped and lumped/distributed networks has been developed. . The capacitor
voltages (or charges) and the inductor currents (or fluxes) are usually chosen as the lumped state
variables. The reflected voltages at the transmission lines can be chosen as the distributed state
variables. In all these cases the state and output equations are established from the circuit element
values and the topology of the whole network.

It is highly desirable and convenient for circuit designers to consider the non-linear network
composed of subcircuits. These subcircuits are represented by functional blocks described by a set
of equations. In this case the formulation of the whole network equations starts from the top level
of the subcircuits (multiports). The graph of the network is only describing the interconnection
of all network multiports.

Multiport representation is common for linear networks in the frequency domain where any of
the usual multiport parameters (x, y, h, g) or the scattering parameters can be used. When any
of these parameters are known, the topology and element values of the multiport are no longer
required. No such treatment has so far been available for non-linear networks. Non-linear networks
are usually solved in the time domain either by direct integration of the network equations,' by
using associated discrete circuit modelling (Spice) or by the harmonic balance technique. 2 In the
harmonic balance method the non-linear subnetwork is still solved in the time domain. It is then
a great advantage to develop a method of characterizing non-linear networks from their terminal
behaviour and treat them as multiports.

In this work multiports can represent networks with I imped, distributed and non-linear elements.
Each multiport is represented by non-linear state and output equations and the overall network
is composed of a number of individual multiports connected in an arbitrary fashion. The state and
output equations of the overall network are derived and solved in the time domain. Thus the
method enables the hierarchical development of non-linear networks. At the lowest level of
hierarchy the multiport equivalent is developed from individual circuit elements (linear and/or

0894-3370/93/010067-15$12.50 Received 27 November 1991
(E 1993 by John Wiley & Sons, Ltd. Revised 4 March 1992
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non-linear) using a tabular approach. At the higher levels only the multiport equivalent is required.
Any number of hierarchical levels can be developed.

The present formulation gives separate differential, difference and non-linear equations for the
overall network and for each of the individual multiports. This leads to an efficient and numerically
stable algorithm. No difficulties have been encountered in analysing networks with very unequal
time constants such as microwave mixers.

The advantages of this approach are summarized below:

(1) A large network can be divided into smaller subnetworks and the equations for each subnet-
work are derived separately.

(2) A library of subnetworks can be developed and stored for future use without the need of an
equivalent circuit. This includes transistors, FETs, diodes, matching sections, filters and
couplers.

(3) The equations characterizing a non-linear device can be derived to match experimental data
without the need to develop a physically realizable equivalent circuit. This gives a greater
flexibility in modelling active devices.

(4) The subnetworks developed can be used in either a direct integration subroutine or a harmonic
balance subroutine.

2. THE GENERALIZED L/D MULTIPORT

A general multiport composed of individual multiports is shown in Figure 1. The individual
multiports are composed of lumped. distributed elements and dependent sources. The lumped
elements are linear and non-linear resistors, capacitors and inductors. The distributed elements
are transmission lines coupled or uncoupled embedded in homogeneous or inhomogeneous media.
The overall network is composed of all individual multiports and independent sources. Each
muhiport has current-driven and voltage-driven ports. These are ports for which either the current
or the voltage is considered as the input. The jth multiport is described by

v = Aix' + B'ui + Bjul (1a)

yj= Cjxl + Diu' + Du,, (lb)
Fi, = C1,x' + D'u' + O•,, (Ic)

where

x) [xj(t)x•(t)]T, x1(t) and x.(t) are the lumped and distributed state vectors of the jth
multiport, respectively,

I-?
SF i mces (3 Sournes

jth maltirnrt

Figure 1. General lumped-distributed non-linear multiport
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i = fdx•(t)xJ(t + TO) Tk is the delay of .he kth transmission line,dt--r
ui = [ii v' j1r is the input vector.
yJ = [v/ iiJ T is the output vector,
ul is the vector of the controlling voltages and currents of the non-linear elements,
& = [fý(xJ,ui,u/,t)JT is the vector of the non-linear functions,
AJ, Bj . .. are real matrices of the state and output equations of the jth multiport,
and the subscripts cp and vp refer to the current-driven or voltage-driven ports.

With each non-linear lumped distributed multiport being represented by equation (1) we now
proceeded to derive the state equations of the overall network which consists of any number of
individual multiports.

3. THE NETWORK TOPOLOGY

The whole network is obtained by interconnecting all multiports and independent sources. The
topology of these interconnections is represented by unconnected graphs. The edges of each graph
have to satisfy Kirchhoff's laws. A forest is defined and Kirchhoff's laws can be expressed in the
hybrid form. fiD ] o[v,

= T  
(2)

vc -D 0 iý

where D is the dynamical transformation matrix.-'-

Dv•.cp D,,.-p D,.....

D Dp.Cp' D,P- p D, ..- (3)

Dvr.p I D•,.l• Dr,x.s-

if = [i•.,icP.iJ J.fT v, = 1 v" v.v T

vC = [V(P.Cvcv~ pv]T ic = [i,.CivP.C idr

and the subscripts f, c, vs. cs refer to the forest. coforest. independent voltage source and
independent current source respectively.

Let us define the following vectors

U, = [iCP.fVvp.cjr, U, = [Vsri(.jC]T, U., = I Vj ,_ic•,]

y, = [Vp.fivP.U1T, andy 2 = [ivp.fVp.lr

where u, is the source vector containing all the independent voltage and current sources of the
whole network.

It should be noted that the independent voltage and current source edges must be always in
the forest and coforest, respectively. Without loss of generality, the maximum number of current-
driven ports of all multiports are assigned to the forest (DP,,, = 0).

The following equations can be obtained from (2) and (3).

ul = Fly, + Fu 2 + Flu, (4a)

Y2 = -F2yl + F4u, (4b)
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where [ 0 D[ [ ,

T -

= T.P 1ý = -Dý,
0 D 0 L (LI ~ and F,L--=Kv I [ D.,,p

DTP 01) " 0

Equations (4) are auxiliary equations which will be used in the derivation of the network equations
in the next section.

4. FORMULATION OF THE NETWORK EQUATIONS

The state, output and non-linear equations of the whole network consisting of a number of
multiports is written in the form.

.f,, = .l ix, ,,u,, i -- ,,t pu,, (5a)

ef,, x,, + 51, D,,,,, (5b)
, PXP + 6,,,u,, + D,,,1,,, (5c)

where .P, x,,, up, u, and F,,, are real vectors. each vector contains the elements of the corresponding
vectors of all multiports (e.g. xP = ['rxi...x' PT. in is the number of all inultiports). A-P ,,p, B,,,
e b,,, 6,.A ,,r, elu,, . and D),,,, are real quasidiagonal matrices, each matrix contains the elements
of the corresponding matrices of all multiports.

The state vector is rearranged to contain all the lumped state variables followed by the distributed
ones of the whole network. The vectors u,, and y•, are also rearranged according to the forest and
coforest edges of the defined vectors al. ut,. Y and Y. Hence the foilowine relations are obtained:

x = P, x,, (toa)

U= Pzu. (6b)

and

Y = P, y,, (6c)

where P, and P, are elementary transformation matrices' with element values of zero or one,

u = [uIu 2 I, y = [y.y 2 ]IT

From (5) and (6) the overall network of multiports is described by

,f = Arx + B,,u + B,,u, (7a)

Y = C, x + Du + D,,Pu, (7b)

and

F, , C1 , x + D,,u + DI,,u, 
(7c)

where

A P = P,A pP Ir, B P, = P,'I.P2" B., -- P , A ".
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Cp = P _X P'1Pr, Dp = P ,,6p P T, O,,p = P:,6,,

C", = CI,,P[, Dip = 6IpPI and D,.. = 15,,p

Equation (7b) is partitioned as follows.

[ Y_ 1 1 p 1 , u , ( 8 )

[y IC L DP1 DP4 J Db,z

From (4) and (8). we get

vj = VVIX + iVA, + 1%'ýu,, (9~)

Table I. State-space representation of hasic lumped elements
i1

Element Inputs Matrices of state and output equation%

A B C D

it I C

i i

I n 141, -- - R

i12i2 t- 0

Resistor {.....

U IV,

i~t 0) 11n

I I

LI L2 ILI 0

Nonidea nrmer

_____ _i ___ u_ __ _ __2__ __-l _ __ _ __
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Table 1I. State-space representation of transmission lines

Element Inputs Matrices of state and output equations

A B C D

r0i 1f 0 zjVl21  1. 0 1 1 [0o 1 [-_ j . I _I_____jil Z,=IY, 2' u [i ] 1? 0o 4o
+ • .+ o',,,0,4

Transmisssioq line = V2 f 0 { 0 0

r-]Z,=I , it 1.1l 1 ~ 1-2K, ()I i I .

Open-circuited stub u=il Z. ) f2 o) IZJ

Z0 1i- I'l U ~ 1 -2K, 01 1Y.
[ o -,I Ii lF -l Z

_ _ _ ___ _ _ _ I _ _ _ [ _ _ _ _ _ _ _

where [j I- FID, I-F, DP,- F,

D,, + FTrD,, F,`D,, , D,,,

F!r, I- C,21

w•= [E FD,]

L-I•D~ I - D
7 

pI

and ,, is a unit matrix.
Finally, the network equations are obtained from (7) and (9).

i = Ax + Bu, + B.u,, (10a)

y = Cx + Du, + D~u, (10b)
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Table Ill. State-space representation of linear controlled sources

Element Linear Excitation Matrices of state and output equations
relations inputs

A B C D

ii2
2i -a -[ t[ 0

vi 2 v =0 U 2 =t 0

CCCS [

il i2

i2 =gtvl v

-vccs }{

"I 0
i2 =i2v 2

+ v2 i2 = 0 l

v l i2i142

i i2

vJ t 0 [i2] -00J

•CCVS

F, Cx + Du, + D 1 .u,. (10c)

where

A = BBw0
1 w, + A,

B = Bpwo'I' 2

B, = BpwJ'w, + B,,

C = Dpw61w, + Cr

D = DwO'wW
D, = Dw-w1 • + DP

C, = D j,w 0`wj + C1,,

D, = DIpw0L-w 2

D1. = Dipwo"'w1 + DIP
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Table IV. State-space representation of basic non-linear elements

Element Non-linear Inputs Matrices of state and output equations
relations

A B B, C D DIC, D, Di,,

i = V) U V 0 0 1 0 0 1SU,, IV d

u= i 0 0 1 0 1 0
Voltage-controlled u= v

resistor

I- 0= o

U - I- L 1 0

Current-controlled u, = V

resistor
+!

v E g(q) =I1 0 110 1g(vH. C,,-c. u. = E .o

Non-linear capacitor E

,f Pi, L=f-))-i u, J 0 Lj( 1 0 0 0 1

Non-linear inductor

E f(xu.ut) U,, E 0 1 0 0

Non-linear voltage

source

u• = J -- -

Noxn-inarou) UcV rn0 1 0 0 1

Non-linear current
SO urce - - -~
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The matrix wo may be singular due to the dependence between some of the lumped state variables.
Such dependence which is due to the interconnection of all multiports can only arise under the
following conditions:

(1) The network has some cutsets consisting of only inductors and current sources.
(2) The network has some loops consisting of only capacitors and voltage sources.
(3) The presence of dependent sources in some special cases. This condition does not occur in

practical networks.

The dependent stateals wit te cirueliminated by elementart row and column operations on
the coefficient matrices in (9).

5. SIMULATION

A general computer program has been developed for the analysis of non-linear LiD networks.
The formulation of the network equations has been established by using sparse matrix techniques.
The solution of (10) can be obtained as explained in Reference 1.

The explicit forms of the matrices of network equations, describing the devices and subcircuits
commonly used are implemented in the program, The advantage of the proposed method is that
the developed program deals with these circuits as multiports, describing their terminal behaviour
instead of dealing with their basic circuit elements. Basic linear and non-linear circuit elements
(such as resistors. inductors, capacitors. controlled sources and transmission lines) can also be
represented as muitiports. The state space representation of these elements is given in Tables 1,
11, 111 and IV.

6. EXAMPLES

The developed program has been applied to several examples. In the following examples. the
circuit is partitioned into muitiports using some of the implemented subcircuits in the program
such as diodes, MESFET's and matching sections.
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6. 1. Schottky diode balanced mixer

A balanced microwave mixer circuit using two silicon Schottky diodes DC1533G was analysed.
The local oscillator and intermediate frequencies are 7 and 0,144 GHz, respectively. The schematic
diagram of the mixer is shown in Figure 2(a). The network is divided into a number of multiports
and models of each multiport. including the Schottky diodes, are developed and stocd in the
program library. The overall network is then analysed as an interconnection of the multiports. as
shown in Figure 2(b). The equivalent representations of each multiport are given in Table V. A
higher level of hierarchy is also possible and larger multiport representations can be made if
required. The output waveforms before and after IF filter are snown in Figure 3. The variation
of the conversion loss with RF frequency is shown in Figure 4.

6.2. MESFET frequency doubler

A similar procedure has been used to analysc a 2,5 GHz frequency doubler, using a Plessey
P35-1105-1 MESFET, shown in Figure 5(a) and the multiport equivalent is shown in Figure 5(b).
The output waveform is shown in Figure 6. The output is further analysed and the fr -quency
response is obtained. The circuit has been built and tested and the theoretical frequency response
is compared with the practical measurements in Figure 7. Good agreement is shown between
measured and predicted results which gives confidence in the developed method.

7. CONCLUSION

Non-linear lumped-distributed networks can now be analysed in the time domain as an intercon-
nection of multiports. The overall network is divided into a number of subnetworks and each

3 .7t• -

LJ

,-2. jO

TPE , ,E-S

CPUi -

1 [ 9

Figure 3. Simulated oulput of microwave mixer
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Figure 4. Frequency response of microwave mixer
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(a) Schematic diagram of frequency doubler

Vo

(b) Kultiport equivalent of frequency doubler

Figure 5. Circuit diagram and multiport equivalent of frequency doubler. (a) Schematic diagram of frequency doubler.
(b) Circuit diagram and multiport equivalent of frequency doubler

subnetwork is characterized separately. A library of subnetworks can be developed from active
elements such as transistors, FETs, diodes, et-. with very little storage required. The non-linear
multiports can be used in either a direct integration subroutine or using the harmonic balance
method.



80 M. 1. SOBHY, E. A. HOSNY AND M. A. NASSEF

-2

-3

-4

.6

-7

-s I I

S ln 3 1 5-6 7

Figure 6. Output waveform of frequency doubler
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AIMS AND SCOPE

Prediction through modelling forms the basis of engineering design. The computational power at the fingertips,
of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly.
Engineers need models which relate to their dc.,ign area and which are adaptable to new design concepts. They
also need efficient and friendly ways of presenting. viewing and transmitting the data associated with their models.

The International journal of Numerical Modellingi: Electronic .Vetworks, Dezvices and Fields provides a com-
munication vehicle for numerical modelling methods and data preparation methods associated with electrical and
electror.ic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mahematics.
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